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Abstract—Secure coding practices (SCPs) have been proposed
to guide software developers to write code securely to prevent
potential security vulnerabilities. Yet, they are typically one-
sentence principles without detailed specifications, e.g., “Properly
free allocated memory upon the completion of functions and at
all exit points.”, which makes them difficult to follow in practice,
especially for software developers who are not yet experienced
in secure programming. To address this problem, this paper
proposes SCPatcher, an automated approach to enrich secure
coding practices by mining crowd security discussions on online
knowledge-sharing platforms, such as Stack Overflow. In par-
ticular, for each security post, SCPatcher first extracts the area
of coding examples and coding explanations with a fix-prompt
tuned Large Language Model (LLM) via Prompt Learning. Then,
it hierarchically slices the lengthy code into coding examples
and summarizes the coding explanations with the areas. Finally,
SCPatcher matches the CWE and Public SCP, integrating them
with extracted coding examples and explanations to form the SCP
specifications, which are the wild SCPs with details, proposed by
the developers. To evaluate the performance of SCPatcher, we
conduct experiments on 3,907 security posts from Stack Overflow.
The experimental results show that SCPatcher outperforms all
baselines in extracting the coding examples with 2.73% MLine
on average, as well as coding explanations with 3.97% F1 on
average. Moreover, we apply SCPatcher on 447 new security
posts to further evaluate its practicality, and the extracted SCP
specifications enrich the public SCPs with 3,074 lines of code and
1,967 sentences.

I. INTRODUCTION

Secure Coding Practices (SCPs) have been recently pro-
posed by practitioners and institutions to guide software de-
velopers to write code that is more resistant to security vulner-
abilities and attacks [1]. For example, Google proposed “Best
Practices for Security & Privacy” for secure development
on Android [2]; University of California, Berkeley proposed
“Secure Coding Practice Guidelines” to guide developers
regarding the application software security [3]. The Open
Worldwide Application Security Project (OWASP) proposed
a quick reference for security in general coding [4], which is
a comprehensive set of SCPs.

However, the aforementioned publicly available SCPs are
typically one-sentence principles without detailed specifica-

tions. For example, there is an SCP from OWASP regarding
memory management: “Properly free allocated memory upon
the completion of functions and at all exit points”, which is
barely a single sentence recommending developers to “prop-
erly free allocated memory” without any detailed guidance.
Thus, such SCPs are difficult to follow in practice, especially
for software developers who are not yet experienced in secure
programming. On the other hand, there are many crowd
security discussions on online knowledge-sharing platforms,
such as Stack Overflow (SO) [5], and some security posts
incorporate detailed coding practices, including coding exam-
ples and explanations, which are even referenced by security
practitioners. For example, Frank van Puffelen suggested the
best practices for Google Firebase data models on Twitter [6]
with the SO security post #70711696. Therefore, the detailed
coding practices embedded in the crowd security discussions
are complementary to the public SCPs and can be leveraged
to form the SCP specifications to enrich these SCPs.

In this paper, we propose SCPatcher, an automated approach
to enrich secure coding practices by mining crowd security
discussions on online knowledge-sharing platforms. In partic-
ular, for each security post, SCPatcher first extracts the area
of coding examples and explanations with the LLM, which
is the novel method that achieves state-of-the-art (SOTA)
performances on multiple natural language process (NLP)
tasks. We guide the area extraction with Prompt Learning on
LLM and utilize the fix-prompt tuning to train it on our dataset.
Then, it hierarchically slices the lengthy code to the coding
examples and summarizes the coding explanations within
these areas, Finally, SCPatcher matches the CWE and public
SCP, and integrates them with extracted coding examples and
explanations to form the SCP specifications.

To evaluate the performance of SCPatcher, we conduct
experiments on 3,907 security posts collected from Stack
Overflow, and compare SCPatcher with multiple representative
baselines. The results show that, SCPatcher outperforms all
baselines on extracting the coding examples, outperforming
the baselines with 2.73% on the matching rate of LOC
(MLine) on average. SCPatcher also achieves the highest



F1 performances on extracting coding explanations, outper-
forming the baselines with 3.97% on average. For enriching
the CWE and public SCP, we apply SCPatcher on 447 new
security posts to further evaluate the practical usage. The
extracted SCP specifications enrich the public SCP with 3,074
LOC and 1,967 sentences. The major contributions of this
paper are summarized as follows:

• Technique: SCPatcher, an automated approach to enrich
the public secure coding practices. To the best of our
knowledge, this is the first work on automatically enriching
the public SCPs with crowd security discussions.

• Evaluation: An experimental evaluation of SCPatcher,
which shows that SCPatcher outperforms all baselines, to-
gether with a user study with security practitioners, which
further demonstrates its usefulness in practice.

• Data: We release a public dataset with 3,907 security posts
and source code on [7] to facilitate the replication and the
application of SCPatcher in the more extensive contexts.

In the rest of the paper, Section II illustrates the motivation
example. Section III presents the details of our approach.
Section IV sets up the experiments. Section V describes the
experimental results and analysis. Section VI presents the
discussion and threats to validity. Section VII discusses the
related work, and Section VIII concludes this paper.

II. MOTIVATING EXAMPLE

Recent researchers have observed that open-source com-
munity platforms such as Stack Overflow and GitHub have
converged security-related knowledge in a large volume [8].
Although the crowd and open nature might lower the confi-
dence in the accuracy of those security reports released by
organizations, the platforms still have non-negligible contri-
butions in providing valuable and practical knowledge to help
massive developers resolve their security concerns. Mining the
crowd security discussions on those platforms would give the
opportunity to enrich the current secure coding practices.

Fig. 1 shows an example of enriched secure coding practices
from Stack Overflow’s security posts. One developer asked
a security question about authenticating the Firebase using
cookies, providing the insecure code and the corresponding
explanation that the cookies might be tempered. The post has
been viewed 9K times, and the accepted answer contains the
detailed secure practice of using the persistent cookies to avoid
repeated login in the Firebase. From their discussions, we can
extract both secure and insecure coding examples and their
corresponding explanations as shown in Fig. 1. Moreover,
we find that their discussed insecure coding example and
explanation indicate the tempering of cookies from the web
pages, which could match with the “cross-site scripting”
weakness reported in CWE-79 [9]. The secure coding example
and explanation introduce the protection of such weakness by
restricting access to users, which matches with the Access
Control #13 reported by OWASP [4]. Based on the observa-
tion, we believe that extracting detailed examples and their
explanations, as well as matching them with current secure

Handling Firebase ID tokens on the client side with vanilla JavaScript
Asked 5 years, 2 months ago   Modified 5 years, 2 months ago   Viewed 9k times   Part of Google Cloud Collective

I am writing a Firebase application in vanilla JavaScript. I am using Firebase Authentication and FirebaseUI for Web. I 

am using Firebase Cloud Functions to implement a server that receives requests for my page routes and returns 

rendered HTML. I am struggling to find the best practice for utilizing my authenticated ID tokens on the client side to 

access protected routes served by my Firebase Cloud Function. Here is my public/auth.js, where the token is 

requested and received on the client. This is where I get stuck:

If we don't want to implement a single page application and stick to cookies, choose Persistent Cookies: Persistent 

cookies are those with a max-life/expiration date. These cookies persist until the time period is over. Persistent cookies 

are preferred when you want the cookie to exist even if the user closes the browser and comes back next day, thus 

preventing authentication every time and improving user's experience.

/* global firebase, firebaseui */
const uiConfig = {

// signInSuccessUrl: '<url-to-redirect-to-on-success>',
signInOptions: [

// Leave the lines as is for the providers you want to offer your users.
firebase.auth.GoogleAuthProvider.PROVIDER_ID,
// firebase.auth.FacebookAuthProvider.PROVIDER_ID,
…]

callbacks: {
signInSuccess () { return false }}}

const ui = new firebaseui.auth.AuthUI(firebase.auth())
ui.start('#firebaseui-auth-container', uiConfig)
- firebase.auth().onAuthStateChanged(function (user) {
- if (user) {
- firebase.auth().currentUser.getIdToken().then(token => {
- console.log('You are an authorized user.’)
- // This is insecure. What should I do instead?
- document.cookie = '__session=' + token })
- } else {
- console.warn('You are an unauthorized user.')}})

/* global firebase, firebaseui */
const uiConfig = {

// signInSuccessUrl: '<url-to-redirect-to-on-success>',
signInOptions: [

// Leave the lines as is for the providers you want to offer your users.
firebase.auth.GoogleAuthProvider.PROVIDER_ID,
// firebase.auth.FacebookAuthProvider.PROVIDER_ID,
…]

callbacks: {
signInSuccess () { return false }}}

const ui = new firebaseui.auth.AuthUI(firebase.auth())
ui.start('#firebaseui-auth-container', uiConfig)
- firebase.auth().onAuthStateChanged(function (user) {
- if (user) {
- firebase.auth().currentUser.getIdToken().then(token => {
- console.log('You are an authorized user.’)
- // This is insecure. What should I do instead?
- document.cookie = '__session=' + token })
- } else {
- console.warn('You are an unauthorized user.')}})

Question

Accepted Answer

Security Post in Stack Overflow

SCP Specification

Insecure Coding Example

Insecure Coding Explanation

Secure Coding Explanation

Secure Coding Explanation: If we don‘t want to implement a single page application and stick to 

cookies, choose Persistent cookies: Persistent cookies are those with a max-life/expiration date. 

These cookies persist until the time period is over.

Secure Coding Example:

Insecure Coding Example:

- firebase.auth().onAuthStateChanged(function (user) {
- if (user) {
- firebase.auth().currentUser.getIdToken().then(token => {
- console.log('You are an authorized user.’)
- // This is insecure. What should I do instead?
- document.cookie = '__session=' + token })
- } else {
- console.warn('You are an unauthorized user.')}})

- firebase.auth().onAuthStateChanged(function (user) {
- if (user) {
- firebase.auth().currentUser.getIdToken().then(token => {
- console.log('You are an authorized user.’)
- // This is insecure. What should I do instead?
- document.cookie = '__session=' + token })
- } else {
- console.warn('You are an unauthorized user.')}})

Insecure Coding Explanation: Cookies/localStorage/webStorage do not seem to be fully securable, 

which might be tempered, at least not in any relatively simple and scalable way that I can find. 

Relevant CWE-ID: Improper Neutralization of Input During Web Page Generation ('Cross-site 

Scripting’). (CWE-79)

Relevant Public SCP: Restrict access to user and data attributes and policy information used by 

access controls. (OWASP Access Control #13)

Cookies/localStorage/webStorage do not seem to be fully securable, which might be tempered, at least not in any relatively 

simple and scalable way that I can find. There may be a simple cookie-based process which is as secure as directly 

including the token in a request header, but I have not been able to find code I could easily apply to Firebase for doing so.

+ document.cookie = '__session=' + token + ';max-age=' + (3600*24*7) /* Persistent 1 week */+ document.cookie = '__session=' + token + ';max-age=' + (3600*24*7) /* Persistent 1 week */

Secure Coding Example

+ document.cookie = '__session=' + token + ';max-age=' + (3600*24*7) /* Persistent 1 week */+ document.cookie = '__session=' + token + ';max-age=' + (3600*24*7) /* Persistent 1 week */

Fig. 1: An example of extracting SCP specification from Stack
Overflow #48884217.

coding practices, could enable a better understanding and thus
facilitate the development of secure software.

III. APPROACH

The overall framework of SCPatcher is illustrated in Fig.
2. Since directly extracting the coding examples and ex-
planations from the entire security post is non-trivial, we
adopt a two-step extraction strategy: first, we extract the
areas of coding examples and explanations with LLM; second,
from the extracted areas, we condense the coding examples
with hierarchically slicing if they are lengthy and extract the
sentences about coding explanations. Afterwards, we match
the extracted coding examples and explanations to the relevant
CWE and public SCP and put them together to form an SCP
specification.

A. Extracting the Areas of Coding Example and Explanation

A security post typically contains many sentences, while
only a relatively small number of sentences are relevant to
coding examples and explanations. To reduce the impact of
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Fig. 2: The overview of our approach.

non-relevant sentences, we extract the areas that are more
likely to contain examples and explanations.

Typically, developers tend to propose security concerns
in Questions, and other developers would give solutions in
Accepted Answers. Therefore, Given the security post P , we
predict the areas of insecure coding examples and explanations
from question Q, and predict the secure coding examples and
explanations from accepted answer A.

To better fit the LLM to our task, we use the Prompt
Learning [10] technique for tuning the LLM. Prompt Learning
is a novel paradigm for the prediction and training of LLM,
achieving SOTA performance on various NLP tasks. Different
from the traditional paradigm, i.e., Pre-training+Fine-tuning,
prompt learning adapts the NLP tasks to the LLMs [11], which
reduces the training costs and fully utilizes the resources of
models. Prompt learning utilizes the Prompt Templates [12] to
enhance inputs with instructions of NLP tasks and bridge the
gaps between inputs and LLMs.

Prompt-based Area Extraction. To extract the areas based
on the prompt-learning, we design the prompt template based
on the Cloze-testing, which is a typical prompt template
in text extraction tasks [13]. We compare the two widely-
used templates, i.e., Cloze-testing and Prefix templates, and
choose the best-performed one (Section VI-A). The template
for extracting the areas is shown as follows:
• Prompt Template: [X] The {insecure|secure} codes and

sentences are [Y].
where the [X] indicates the input of LLM, i.e., Q and A. We
first replace the [X] token in the template with Q and A, and
obtain the templated inputs TQ and TA:
• TQ: [Q]. The insecure codes and sentences are [Y].
• TA: [A]. The secure codes and sentences are [Y].
where [Q] and [A] indicate the texts in question and the
accepted answer. Second, we choose the generative LLM to
predict the [Y] token in the TQ and TA [14]. Respectively,
the output [Y] of TQ consists of the area of insecure coding
example A Exam−, and the area of insecure coding expla-
nation A Expl−; the output [Y] of TA consists of the area
of secure coding example A Exam+ and the area of secure
coding explanation A Expl+.

Fix-prompt Tuning. For the training of LLM, we apply
the Fix-prompt Tuning [15] which is a training method for
manually designed templates, and is more suitable for the
few-shot scenario. Given the predicted areas and ground-truth
labels, the loss for fix-prompt tuning is calculated as follows:

Larea = λ1Cr(yexam− , A Exam−) + λ2Cr(yexam+ , A Exam+)

+ λ3Cr(yexpl− , A Expl−) + λ4Cr(yexpl+ , A Expl+)
(1)

where yexam− , yexam+ , yexpl− , and yexam+ indicate the la-
beled insecure&secure coding examples, and insecure&secure
coding explanations. The function Cr(y, f(x)) is the CRINGE
loss [16], which is specifically used to train generative LLM
models. λ1 ∼ λ4 are the loss-balancing parameters for the
fix-prompt tuning.

To select the best LLM for extracting the areas, we
choose five representative LLMs, i.e., BERT-base [17], Albert-
large [18], GPT-2 [19], T5 [20], and GPT-3 [21], [22],
and conduct the fix-prompt tuning on our labeled dataset in
Section IV-A, We compare the accuracy between predicted
and ground-truth areas, which calculates the ratio of areas
that contain coding examples and explanations on all the
predictions. We can see that, as is shown in Table I, the GPT-3
achieves the highest results on the four tasks of area extraction,
with over 80% accuracy. It outperforms the other LLMs with
6.48% (Insecure Coding Example), 2.77% (Secure Coding
Example), 8.50% (Insecure Coding Explanation), and 4.27%
(Secure Coding Explanation). Therefore, we choose GPT-3 as
the LLM in SCPatcher.

TABLE I: The accuracy of LLM on extracting the areas of
coding examples and explanations (%).

LLM Coding Example Coding Explanation
Insecure Secure Insecure Secure

BERT-base 65.76 65.35 68.53 59.92
Albert-large 70.92 68.59 73.45 63.07

GPT-2 70.44 70.23 73.92 73.14
T5 82.58 84.83 78.22 79.36

GPT-3 89.06 87.60 86.72 83.65
(↑6.48) (↑2.77) (↑8.50) (↑4.27)



TABLE II: The five categories of SFV’s keywords.

Types Description Example

WW The weakness words in the secure
and insecure coding explanation.

Weakness Encoding,
Compiler Optimization,
Improper Handling,

TW The target words in the secure and
insecure coding examples.

Password, OS System,
Code, Cookies

AW The attack words in insecure cod-
ing explanations.

Change, Modify, Inject,
Steal, Hack

DW The defense words in secure cod-
ing explanations.

Prevent, Protect, Save,
Initialize

CW The words that both occur in inse-
cure&secure coding explanations.

Memory, Method, Le-
gitimate

B. Extracting Coding Examples and Explanations

The areas extracted by LLM contain insecure or secure
coding examples and their explanations. To exactly extract
these elements from the areas, we first extract the security
feature vector (SFV) from the areas to represent the high-
level security-related features. Then, based on the extracted
areas and SFV, we slice the lengthy coding examples, and
summarize the sentences of coding explanation in parallel.
Finally, we output the insecure/secure coding examples and
explanations.

Extracting the Secure Feature Vector (SFV). To accu-
rately extract the security-related codes and sentences from
the areas, we extract the SFV from the areas of coding
examples and explanations, which are high-level representa-
tions of security-related knowledge. As shown in Table II, we
extend Shen’s work [23] and come up with five categories
for SFV’s keywords, i.e., Target Words (TW), Attack Words
(AW), Defense Words (DW), and newly add Weakness Words
(WW) and Co-occurrence Words (CW) for our task.

After extracting the words of in each category, we embed
these words using GloVe [24], which is a widely-used word
embedding model in NLP tasks, such as text classification, text
summarization, semantic analysis, etc. The SFV is formed by
concatenating all the word embeddings as follows:

ξ = concat[GloV e(WW,TW,AW,DW,CW )] (2)

where GloV e is the GloVe embedding, concat is the concate-
nation function, WW, ..., CW represent the words in each
category, and ξ is the extracted SFV.

Attention-based Selector. The Attention-based Selector
(AttnSelector) is the core module for slicing lengthy codes and
summarizing the coding explanations. As is shown in Fig. 3,
the selector first utilize the Task-oriented Encoder to embed
the elements of each area [E1, E2, ..., En] to [e1, e2, ..., en].
Then, it incorporates the SFV ξ to these embeddings with
Multi-head Attention [25], which is an effective method to
enhance the embeddings with external knowledge [26]. The
processes of multi-head attention are shown as follows:

f(ei, ξ) = tanh(Wcconcat(ei, ξ) + b)

αi = softmax(f(ei, ξ))

c =
∑

i=1,...,n

αiei
(3)
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Fig. 3: The structure of Attention-based Selector.

where αi indicates the attention weight of each element.
Wc and b are the trainable parameters in attention-weight
calculation. softmax is the activation function to normalize
the αi. Then we sum the weighted embeddings as the enhanced
embedding c.

Finally, the selector utilizes the transformer decoder [27] to
predict the selection probabilities that decide which element
Ei should be selected as the output sentences or codes.

[p(E1), p(E2), ..., p(En)] = Transformer(c)

Output = {Ei|p(Ei) > θ}
(4)

where p(Ei) indicates the output probability of each element
Ei. Based on these probabilities, we set the cut-off value θ
and select elements with probabilities higher than θ as the
summarized coding examples and explanations. For the two
tasks in SCPatcher, the θ value is represented as θslc in
extracting coding examples, and θsum in extracting coding
explanations. We utilize the greedy search to set the θ that
achieves the highest performance on each task.

Determination on Lengthy Code. Previous studies indicate
that the developers tend to post their complete source code
to the security post’s code blocks, wrapped by <code> and
</code> [28], [29]. These codes are usually lengthy, making
it difficult for readers to understand their meanings. Some
researchers suggest that one code block may not contain codes
with more than 15 LOC [30]. To determine the cut-off value
max len for the lengthy code, we also manually inspect 100
code examples in CWEs, and confirm that all of their example
codes are less than 15 LOC. Therefore, we determine to take
the 15 as the threshold for lengthy code.

Hierarchically Slicing Coding Examples. Under the con-
straint of the maximum code length, we slice the insecure or
secure code in terms of function and fragment based on
the code areas. The slicing algorithm is shown in Algorithm
1. First, we initialize the AttnSelector’s task-oriented en-
coder with a novel encoder CAST encoder [31] that embeds
the AST to the vector and initialize the SLC Code with
LEN Code. Second, for the lengthy code, we transfer them
to the Abstract Syntax Tree (AST) [32] by using the AST
parser tools [33]. Third, based on the parsed nodes in AST,
we separately split the AST based on the function (func
nodes) and fragment (comment and empty line nodes).
Finally, we utilize the AttnSelector to select the candidate
sub-trees with the slicing threshold θslc, and concatenate the
selected sub-trees to the new SLC Code. We iteratively
conduct the split&select processes until the LOC is less than



Algorithm 1: Process of Hierarchical Code Slicer
Input: Original Lengthy Code LEN Code; SFV ξ; Cut-off

Value θslc.
Output: Sliced Code SLC Code.
Task Encoder ← CAST Encoder;
SLC Code← LEN Code;
while len(SLC Code) > max len (15) do

AST = ASTParser(SLC Code);
if func ∈ AST then

[FC1, ..., FCn] = SplitFunc(AST );
SLC Code =
concat(AttnSelector(FC1, ..., FCn, ξ, θslc));

end
if comment/empty line ∈ AST then

[FG1, ..., FGn] = SplitFrag(AST );
SLC Code =
concat(AttnSelector(FG1, ..., FGn, ξ, θslc));

end
end
return SLC Code;

max len, and output the SLC Code. We input the area of
insecure coding example A Exam− to the slicer and obtain
the output insecure coding example Exam−, and input the
area of secure coding example A Exam+ to obtain the secure
coding example Exam+.

Summarizing Coding Explanations. In this step, we aim
to summarize secure/insecure coding explanations from the
extracted areas. Given the area of secure/insecure coding
explanations A Expl, which consists of a set of sentences
[S1, S2, ..., Sn]. We choose the BERT encoder [17] as the
Task-oriented Encoder to embed these sentences, which is
a bidirectional Masked Language Model and Next Sentence
Prediction, and has achieved SOTA performances in many
NLP tasks [34], [35]. Finally, we utilize the AttnSelector
to summarize the sentences of coding explanations with the
cut-off value θsum:

Expl = AttnSelector(S1, ..., Sn, ξ, θsum) (5)

where Expl is the summarized coding explanations. We
summarize the insecure coding explanation Expl− from the
Question explanation area, and summarize the secure coding
explanation Expl+ from the Answer explanation area.

Fine-tuning. Given the selection probabilities in slicing
coding examples and summarizing the coding explanations,
we calculate the combined loss as follows:

L = λslc

K∑
k=1

[H(yexam, p(FC)) +H(yexam, p(FG))]

+H(yexpl, p(S))

(6)

where p(FC) indicates the probabilities of function-based
code slicer; p(FG) indicates the probabilities in fragment-
based code slicer; p(S) indicates the probabilities in the coding
explanation summarizer. yexam and yexpl indicate the ground-
truth of coding examples and explanations. H(y, p(x)) is the
cross-entropy loss function. K is the number of iterations
in slicing the coding examples, and λk is the loss-balancing

parameter for each iteration k. We fine-tune the hierarchical
slicer of coding examples, and the summarizer of coding
explanations, with the joint loss L, until both models achieve
convergence.

C. Matching the Relevant CWE and Public SCP

This step aims to match the extracted coding examples and
explanations to the relevant CWE and public SCP based on
security similarity. Given the extracted insecure coding exam-
ples and explanations C− = {Exam−, Expl−}, and secure
coding examples and explanations C+ = {Exam+, Expl+},
we first obtain the SFV keywords in C− and C+. For each
SFV keyword wi, we find the most similar words in the CWE
or public SCP based on cosine similarity. Finally, we calculate
the average value of all the SFV keywords.

simcwe = Avg(wi∈C−)max(wj∈CWE)cos(wi,wj)

simscp = Avg(wi∈C+)max(wj∈SCP )cos(wi,wj)
(7)

where wi indicates the embeddings of SFV keywords, and
wj indicates the words in CWE/public SCP. The function cos
indicates the cosine similarity, and function max calculates
the distance between the SFV keywords and their most similar
word in the CWE or public SCP. For each security post, we
select the CWE and public SCP when the maximum similarity
is higher than the thresholds θcwe and θscp. For the similarity
lower than the thresholds, we consider the CWE or public
SCP as “unmatched”, which may contain novel weaknesses
and SCPs that are not currently included in CWE and public
SCP. We form the output SCP specification by combining the
selected CWE, public SCP, with the secure/insecure coding
examples and explanations.

IV. EXPERIMENTAL DESIGN

To evaluate the performance of SCPatcher, we investigate
the following three research questions:
• RQ1: What are the performances of SCPatcher on extracting

the secure or insecure coding example?
• RQ2: What are the performances of SCPatcher on extracting

the secure or insecure coding explanation?
• RQ3: What are the performances and capability of SC-

Patcher on matching the CWE?
• RQ4: What are the performances and capability of SC-

Patcher on matching the public SCP?

A. Dataset Preparation

In this section, we prepare our dataset in four steps, i.e.,
data collection and filtering, data preprocessing, data labeling,
and data augmentation.

Data Collection and Filtering Following the previous
study [36], we collect security posts from Stack Overflow via
Stack Exchange Data Explorer [37]. Specifically, we retrieve
security posts from the beginning until Aug 31, 2022, and
prepare the dataset in the following procedures: 1) We obtain
all the posts that are tagged with “security” and its similar
tags, such as “websecurity”, “danger” and “firebase”, etc.,
according to Yang’s work [38]. 2) We filter out the security



TABLE III: The number of security posts in our dataset.

Items Dataset #Total #SCP #Sentences #LOC

Origin Train 3,126 1,874 20,375 19,056
Test 781 447 15,247 10,036

Augmented Train 10,314 9,772 87,204 80,134
Test 781 447 15,247 10,036

posts that do not contain <code> HTML tags, and retain the
posts that tend to discuss the secure coding practice. We
manually inspect the security posts and find that, among those
posts that do not contain <code> HTML tags, less than 3%
posts contain the content of SCP specifications, thus removing
them has a small impact on our dataset. 3) We filter out the
posts that receive negative scores voted by Stack Overflow
users, as well as non-English posts. 4) We filter out the posts
that the scores of their accepted answers are negative to avoid
the bias of subjective decision on accepted answers. As is
shown in Origin row of Table III, we collect 3,907 posts,
with 2,321 SCP specifications, 24.589 sentences, and 22,761
LOC in our original dataset.

Data Preprocessing. We preprocess the collected security
posts with the following procedures: 1) We use the pipeline to
correct typos, remove stopwords, and lemmatize the texts with
Spacy by following the previous work [8]; 2) We tag the code
blocks (wrapped by HTML tags <code>, </code>) with the
token [CODE]; and 3) We remove other HTML tags, such as
<p>, <li>, etc., and retain the plain text inside.

Data Labeling. For each security post, we label the codes of
insecure and secure coding examples, as well as the sentences
of insecure and secure coding explanations. We build a team
with two senior researchers, two Ph.D. students, and four
Master’s students to label the dataset. All annotators have
extensive experience in secure software development, and four
participants (50%) are external annotators. To reduce the bias,
each security post is labeled by two team members. When
different opinions occur on the labels, we discuss them with
all team members until a decision has been reached. Only a
few posts have conflicting opinions, and the average Cohen’s
Kappa [39] is 0.91, which means the biases of ground-truth
labeling are minor.

Data Augmentation. As introduced in section III-A, we
perform prompt learning to tune LLM, and fine-tune the
AttnSlicer to fit our task. We split the dataset into training
and testing datasets with the proportions 80% and 20%, where
the training dataset is used for tuning LLM and AttnSlicer,
and the testing dataset is used for evaluation. To make the
tuning sufficient and effective, we augment the training dataset
by employing EDA [40], a widely-used and effective data
augmentation technique. By replacing words with synonyms,
random insertion, deletion, or swapping of words, etc., EDA
helps us create new security posts while keeping their original
meanings. The details of the augmented dataset are shown in

1The kappa-value>0.81 is considered as perfect agreement.

the Augmented row. In total, we collect 3,907 security posts
and augment them to 11,091 security posts.

B. Baseline Selection

To evaluate the advantage of our approach, we select a
SOTA approach on general NLP tasks (i.e., GPT-3), two SOTA
approaches on vulnerable code slicing (i.e., VulSlicer and
DeepBalance), and two SOTA approaches on text summariza-
tion (i.e., BERTSum and BART).

Baseline for Both RQ1 and RQ2. To compare the SC-
Patcher with LLMs, we choose the GPT-3 [21] as the common
baselines on both RQ1 and RQ2, which is a novel LLM
proposed by OpenAI. GPT-3 has achieved SOTA performances
on many few-shot NLP tasks, and it also opens the fine-tuning
interface for researchers to train their own models. We utilize
the same prompt template in Section III-A to directly extract
the coding examples and explanations, then use the labeled
dataset to fine-tune the GPT-3.

Baselines for RQ1. VulSlicer [41] is a search-based pro-
gram slicer that slices the vulnerable code by comparing the
code embeddings with the codes in the pre-defined vulnera-
bility library. DeepBalance [42] is the novel vulnerable code
detector [43] that utilizes the Bidirectional LSTM to learn
invariant and discriminative code representations and detect
the vulnerable codes, and employs the fuzzy oversampling
method to train the model.

Baselines for RQ2. BERTSum [44] is a novel text
summarization model that fine-tunes BERT model with
summarization-based tokenizer and use the embedded sentence
to predict whether it belongs to the summarization; BART [45]
is a seq-to-seq denoise auto-encoder trained on corrupting
texts, and is suitable for information extraction of documents
with various structures.

To ensure a fair comparison, we performed fine-tuning for
all the baselines on our data with the same settings as our
approach. Moreover, to make the baselines more comparable
with our approach, we provide various advanced inputs for
these baselines.
• Baseline+Area. For each baseline, we input the extracted

areas of code and explanations into them, instead of the
entire Stack Overflow posts.

• Baseline+Area+SFV. For each baseline, we input the areas
combined with our SFV embeddings.

C. Evaluation Metric Selection

For RQ1, we apply the generative Rouge-L [46] to mea-
sure the sliced coding examples. We also chosen widely-
used matching rate of tokens (MToken) [47] and lines
(MLine) [41] to calculate the similarity between predicted and
ground-truth codes.

To evaluate the RQ2, we apply three commonly-used
metrics: 1) Precision (Pre.), which calculates the ratio of
correct positive predictions to the total positive predictions;
2) Recall (Rec.), which calculates the ratio of correct positive
predictions to the ground-truth positive labels; 3) F1-measure
(F1), which is the harmony value of precision and recall.



TABLE IV: The baseline comparison on extracting the insecure and secure coding examples (%).

Variants Models Training Hours Insecure Coding Examples Secure Coding Examples Average
Rouge-L MToken MLine Rouge-L MToken MLine Rouge-L MToken MLine

Baseline
VulSlicer 8h 44.36 40.69 38.02 48.90 58.09 56.04 46.63 49.39 47.03

DeepBalance 7h 46.72 53.45 55.19 51.35 63.49 65.05 48.04 58.47 60.12
GPT-3 >20h 54.50 56.25 52.13 56.92 65.25 66.42 55.71 60.75 59.28

Baseline+
Area

VulSlicer 11.5h 49.75 53.25 55.13 51.05 58.24 56.57 50.40 55.75 55.85
DeepBalance 12h 54.12 59.24 63.17 57.83 66.85 67.02 55.98 63.05 65.10

GPT-3 >20h 56.80 64.06 68.75 61.81 71.42 70.54 59.31 67.74 69.65

Baseline+
Area+SFV

VulSlicer 13h 51.13 57.72 59.60 58.95 62.28 63.19 55.04 60.00 61.40
DeepBalance 15h 56.08 69.18 66.28 60.47 69.45 71.63 58.28 69.32 68.96

GPT-3∗ - - - -

Our Model SCPatcher 11h 60.03 71.40 73.31 66.53 77.06 75.44 63.33 74.23 72.38
(↑3h) (↑3.23) (↑2.22) (↑4.56) (↑4.72) (↑5.64) (↑3.81) (↑4.03) (↑4.91) (↑2.73)

TABLE V: The baseline comparison on extracting the insecure and secure coding explanations (%).

Variants Models Training Hours Insecure Coding Explanation Secure Coding Explanation Average
Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1

Baseline
BERTSum 6h 57.72 60.29 58.98 62.37 61.15 61.75 60.05 60.72 60.37

BART 11h 60.24 64.32 62.21 66.42 67.02 66.72 63.33 65.67 64.47
GPT-3 16h 66.15 67.67 66.90 69.15 68.06 68.60 67.65 67.87 67.75

Baseline
+Area

BERTSum 17h 62.65 68.96 65.65 65.87 69.25 67.52 64.26 69.11 66.59
BART >20h 65.47 68.06 66.74 71.74 70.80 71.27 68.61 69.43 69.00
GPT-3 >20h 74.53 75.94 75.23 76.25 75.64 75.94 75.39 75.79 75.59

Baseline
+Area+SFV

BERTSum 18h 65.37 70.49 67.83 68.95 68.14 68.54 67.16 69.32 68.19
BART >20h 67.52 69.92 68.70 73.45 73.52 73.48 70.49 71.72 71.09

GPT-3∗ - - - -

Our Model SCPatcher 11h 78.24 77.92 78.08 80.62 81.47 81.04 79.43 79.70 79.56
(↑5h) (↑3.71) (↑1.98) (↑2.85) (↑4.37) (↑5.83) (↑5.10) (↑4.04) (↑3.91) (↑3.97)

∗Due to the temporary lack of open embeddings for GPT-3, we will compare the GPT-3+Area+SFV when the embeddings are available.

To evaluate the RQ3 and RQ4, we utilize the number
of LOC and sentences to measure the enrichment of CWE
and public SCP, and apply the Precision to measure the
performances of the matchers, which can reflect the accurate
proportion of the matched CWE and public SCP.

D. Experiment Settings
To answer RQ1 and RQ2, for the SCPatcher, we first set the

max len as 15. Then, based on the grid searching [48], we
set the thresholds θslc, θsum as 0.6. We set the loss-balancing
parameters λ1 = λ2 = λ3 = λ4 = 0.25, λslc = 0.5 by grid
search, and choose the 16 batch size to train the SCPatcher
according to the hardware limitations.

For all the baselines and their variants, we choose the default
parameter settings in these works, and use the same batch size
16 to train the models. All the training processes are run on
a personal computer with Windows 11 OS, NVIDIA GeForce
RTX 2060 GPU, and 32GB RAM.

To answer RQ3 and RQ4, we set the θcwe, θscp as 0.5
based on the greedy search. We analyze the performances of
matching the CWE and public SCP, where we use the OWASP
guidelines as the public SCP, since it is a relatively compre-
hensive public SCP on various general coding practices.

V. RESULTS

A. Performance on Extracting the Coding Examples
Table IV illustrates the comparison results of SCPatcher on

matching the coding examples, and the best performance of
each column is highlighted with bold face.

Comparison with Original Baselines. Comparing the SC-
Patcher with the original baselines, we can see that, SCPatcher

outperforms all the original baselines on average, improving
the highest baseline by 7.62% (Rouge-L), 13.48% (MToken),
and 12.26% (MLine).

Comparison with Enhanced Baselines. Comparing the
SCPatcher with the enhanced baselines, i.e., Baseline+Area
and Baseline+Area+SFV, we can see that, SCPatcher also
outperforms these enhanced baselines on average, improving
the best baseline GPT3+Area by 4.03% (Rouge-L), 4.91%
(MToken), and 2.73% (MLine) on average.

Time Efficiency. For the training hours, the time cost of
SCPatcher is 11 hours, which is only longer than the original
VulSlicer and DeepBalance. Combining both the comparison
results and time efficiency, we believe that SCPatcher has
advantages over baselines on extracting coding examples.

Benefits. We believe that the benefits of SCPatcher come
from the following four aspects: 1) The area extraction first
limit the approximate range of coding examples, thus reducing
the impact of noisy codes. Not only the SCPatcher, but also
VulSlicer, DeepBalance, and GPT-3 benefit from the areas
according to the experiment results. 2) The SFV contains
the high-level representation of security-related features, thus
facilitating the extraction of coding examples. The perfor-
mances of VulSlicer and DeepBalance are also improved
after combining the area and SFV. 3) The Attention-based
Selector can effectively learn the external knowledge with
little parameters, thus reducing the training hours. 4) The
hierarchical slicer can locate the coding examples from both
function and fragment, thus improving the accuracy.



Answering RQ1: SCPatcher outperforms all the base-
line on extracting coding examples. It reaches the high-
est Rouge-L, MToken, and MLine with 63.33%, 74.23%,
and 72.38%, outperforming the best baseline with 4.03%
(Rouge-L), 4.91% (MToken), and 2.73% (MLine).

B. Performance on Extracting the Coding Explanations

Table V illustrates the comparison results of SCPatcher on
extracting the coding explanations between baselines, and the
best performance is highlighted with bold face.

Comparison with Original Baselines. Comparing the re-
sults with the original baselines, we can see that, SCPatcher
outperforms these baselines on average, improving the best
original baseline GPT-3 by 11.78% (Precision), 11.83% (Re-
call), and 11.81% (F1) on average.

Comparison with Enhanced Baselines. Comparing the
results with enhanced baselines, we can see that, SCPatcher
outperforms these baselines on average, improving the best
enhanced baseline GPT3+Area by 4.04% (Precision), 3.91%
(Recall), and 3.97% (F1) on average.

Time Efficiency. For the training hours, the time cost of
SCPatcher is 11 hours, which is only longer than the original
BERTSum. Combining both the comparison results and time
efficiency, we believe that SCPatcher has advantages over
baselines on extracting coding explanations.

Benefits. We believe that the benefits also come from the ar-
eas, SFV, and the Attention-based Selector. The performances
of baselines benefit from the area and SFV, with over 10%
improvements in Precision, Recall, and F1.

Answering RQ2: SCPatcher outperforms all the baseline
on extracting the coding explanations. It reaches the high-
est Precision, Recall and F1 with 79.43%, 79.70%, and
79.56%, outperforming the best baseline GPT-3+Area with
4.04% (Precision), 3.91% (Recall), and 3.97% (F1).

C. Performance of Matching the CWE

Table VI shows the matching results of CWEs from the 447
SCP specifications. We can see that, there are 409 SCP speci-
fications are matched with existing CWEs, while 38 posts are
unmatched. Some of these unmatched SCP specifications may
be incorrect predictions due to the limitation of SCPatcher,
while the other part may contain weaknesses that are not
currently included in CWE.

Fig. 4 shows the number of LOC and sentences of SPC
specifications for each CWE. We can see that, for each CWE,

TABLE VI: The size of matched and unmatched CWE.

Items #SCP #LOC #Sentences

CWE Matched 409 3,431 2,074
Unmatched 38 218 239

Public SCP Matched 392 3,074 1,967
Unmatched 55 575 346

TABLE VII: The performances on matching the CWE.

CWE #Pred Pre. (%) CWE #Pred Pre. (%)

CWE-787 76 81.58 CWE-138 5 80.00
CWE-79 68 70.59 CWE-183 5 80.00
CWE-78 58 79.31 CWE-261 4 100.00
CWE-352 46 69.64 CWE-5 3 66.67
CWE-190 40 87.50 CWE-23 3 100.00
CWE-287 37 86.49 CWE-125 3 66.67
CWE-94 27 77.78 CWE-603 3 66.67
CWE-91 10 80.00 CWE-1047 3 100.00
CWE-66 9 77.78 CWE-1065 2 100.00
CWE-121 7 71.43 Average 81.43
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Fig. 4: The statistics of SPC specification for individual CWE.

our approach can extract insecure/secure code examples and
their explanations. Among them, the insecure code examples
account for the most with an average of 107 LOC, while the
secure coding explanation account for the least with an average
of 66 sentences.

Table VII shows the performances on matching the CWE.
The #Pred column shows the number of predictions. The Pre
(%) column shows the precision performance. We can see
that, the number of predictions shows a long-tail trend. The
top-3 maximum number of predictions are CWE-787 (with
76 SCP specifications), CWE-79 (68 SCP specifications), and
CWE-78 (58 SCP specifications). The average Precision of
matching the CWEs is 81.43%. For each CWE-ID, 15/19 has
over 70% Precision. These results indicate that the SCPatcher
can satisfactorily match the CWE for most of the time.

Answering RQ3: SCPatcher can accurately matches the
CWE with 81.43% (Precision) on average.

D. Performance of Matching the Public SCP

Table VI shows the matching results of public SCP from the
447 SCP specifications. We can see that, there are 392 SCP
specifications are matched with existing OWASP types, while
55 posts are unmatched. These unmatched SCP specifications
may be incorrect predictions, or the novel SCPs that have not
been included by OWASP.

Fig. 5 shows the number of LOC and sentences of SPC spec-
ifications for each OWASP type. Overall, the SCPatcher has
the ability to enrich the public SCP with various information.
We can see that, for each OWASP type, our approach can also
extract insecure/secure code examples and their explanations.
Among them, the insecure coding examples account for the



TABLE VIII: The performances on matching the public SCP.

OWASP Types #Pred Pre. (%) OWASP Types #Pred Pre. (%)
Input Validation 44 84.09 Password Manage. 12 83.33
Session Manage. 57 87.72 Output Encoding 7 71.42
Access Control 53 75.47 Crypto. Practices 7 85.71
Database Security 37 89.19 Error Handling 6 83.33
Data Protection 33 87.88 Community Security 5 60.00
System Config. 31 80.65 General SCPs 4 50.00
File Manage. 50 76.00 Average 78.34Memory Manage. 46 80.43
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Fig. 5: The statistics of SCP specification for individual
OWASP’s public SCP.

most with an average 100 LOC, while the secure coding
explanation account for the least with an average 59 sentences.

Table VIII shows the performances on matching the public
SCP. We can see that, the number of predictions shows a
long-tail trend. The top-3 maximum number of predictions
is Session Management (with 57 SCP specifications), Access
Control (53 SCP specifications), and File Management (46
SCP specifications). The average Precision of matching the
public SCP is 78.34%. For each OWASP type, 12/14 has over
70% Precision. These results indicate that the SCPatcher can
satisfactorily match the public SCP for most of the time.

Answering RQ4: SCPatcher can enrich the SCP with 392
SCP specifications, 3,074 LOC, and 1,967 sentences. It
accurately matches the public SCP with 78.34% (Precision)
on average.

VI. DISCUSSION

A. Effect of Prompt Template

To analyze the performances of different prompt templates,
we compare the performances of four templates, as is shown
in Table IX. Two of them are Prefix Templates [49] with the
Q&A format. Another two templates are Cloze Templates [13]
that utilize the cloze-testing to generate the output sentences.
Since the minor differences in the prompt template may greatly
affect the performances of SCPatcher [15], we only replace
the “code and sentence” in the original template with “coding
examples and explanations”, and compare their performances
on the SCP specification extraction.

Fig. 6 shows the results of different prompt templates. We
can see that, for the comparison between template types,

TABLE IX: The performances on different prompt templates.

Template Types ID Template Text

Prefix Template
Prefix 1 [X] What are {insecure|secure} coding

examples and explanations? [Y]

Prefix 2 [X] What are {insecure|secure} codes and
sentences? [Y]

Cloze Template

Cloze 1 [X] The {insecure|secure} coding exam-
ples and explanations [Y].

Cloze 2 [X] The {insecure|secure} codes and sen-
tences are [Y].
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Fig. 6: The results of prompt template comparison (%).

the cloze templates outperforms the prefix templates with
5.02% MLine on Insecure Coding Example, 5.88% MLine
on Secure Coding Example, 3.28% F1 on Insecure Coding
Explanation, and 5.48% F1 on Secure Coding Explanation.
For the comparison on all the four templates, our template
(Cloze 2) achieves the highest MLine and F1, outperforming
the rest templates with 3.15% MLine on Insecure Coding
Example, 1.42% MLine on Secure Coding Example, 1.16%
F1 on Insecure Coding Explanation, and 4.74% F1 on Secure
Coding Explanation. In summary, our prompt template can
effectively help SCPatcher on extracting the coding examples
and explanations from security posts.

B. Effect of Sentence and Code-Block Numbers

To analyze the performances of SCPatcher on numbers
of sentences and code-blocks, we compare the performances
between SCPatcher and the SOTA baseline, i.e., the GPT-
3+Area, on several number intervals. To determine the number
intervals, we manually inspect the testing dataset, then set the
intervals of code blocks as “<3” to “>15”, and set the number
intervals of sentences from “5∼10” to “>30”. Each interval
contains a similar number of posts.

Fig. 7 and 8 illustrate the effect of code-block and sentence
numbers. We can see that, for the comparison of LOC intervals
in Fig. 7 (a) and (b), the SCPatcher outperforms the GPT3-
Area with the average 6.15% MLine on Insecure Coding
Example and 5.37% on Secure Coding Example. For the
comparison of sentence intervals in Fig. 8 (a) and (b), the
SCPatcher outperforms the GPT-3+Area with the average
4.94% F1 on Insecure Coding Explanation, and 3.67% F1 on
Secure Coding Explanation.

For the difference between the highest and lowest MLine
on extracting coding examples, and F1 on extracting coding
explanations, we can see that, the fluctuation of SCPatcher
is smaller than GTP3+Area, with 6.20% MLine on Insecure
Coding Example, 4.95% MLine on Secure Coding Example,
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Fig. 8: Effect of #sentence on extracting coding explanations.

7.97% F1 on Insecure Coding Explanation, and 5.02% F1 on
Secure Coding Explanation.

In summary, SCPatcher performs well on security posts with
different sentence and code block numbers.

C. Qualitative Evaluation

To qualitatively evaluate the performance of SCPatcher on
extracting the SCP specifications, we first conduct a case study
to compare the extraction results between SCPatcher and GPT-
3+Area, and then we analyze the cases where the CWE and
public SCP are not matched successfully.

We compare SCPatcher with the SOTA baseline, i.e., GPT-
3+Area, on extracting SCP specifications on the motivating
example in Fig. 1. Since GPT-3+Area does not support match-
ing of the CWE and public SCP, we first extract the coding
examples and explanations with GPT-3+Area and then utilize
the same security similarity to match the CWE and public
SCP in Section III-C. Fig. 9 shows the results. We find
that SCPatcher can accurately extract the coding examples
and explanations and successfully matches the CWE and
public SCP. The GPT-3+Area, on the contrary, introduces
incorrect code explanations and irrelevant lines of code and
thus matches the incorrect CWE and public SCP. This case
study shows that SCPatcher is more accurate than the SOTA
baseline in extracting SCP specifications.

Although SCPatcher can accurately extract the SCP speci-
fications in most cases, SCPatcher cannot successfully match
the CWE and public SCP for around 10% of the extracted

SCPatcher’s SCP Specification

Secure Coding Explanation: If we don‘t want to implement a single page application and stick to cookies, 

choose Persistent cookies: Persistent cookies are those with a max-life/expiration date. These cookies 

persist until the time period is over.

Secure Coding Example:

Insecure Coding Example:

- firebase.auth().onAuthStateChanged(function (user) {
- if (user) {
- firebase.auth().currentUser.getIdToken().then(token => {
- console.log('You are an authorized user.’)
- // This is insecure. What should I do instead?
- document.cookie = '__session=' + token })
- }

Insecure Coding Explanation: Cookies/localStorage/webStorage do not seem to be fully securable, which 

might be tempered, at least not in any relatively simple and scalable way that I can find. 

Relevant CWE-ID: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting’). 

(CWE-79)

Relevant Public SCP: Restrict access to user and data attributes and policy information used by access 

controls. (OWASP Access Control #13)

+ document.cookie = '__session=' + token + ';max-age=' + (3600*24*7) /* Persistent 1 week */

GPT-3+Area’s SCP Specification

Secure Coding Explanation: These cookies persist until the time period is over. Persistent cookies are 

preferred when you want the cookie to exist even if the user closes the browser and comes back next day, 

thus preventing authentication every time and improving user's experience.

Secure Coding Example:

Insecure Coding Example:

Insecure Coding Explanation: I am using Firebase Authentication and FirebaseUI for Web. Here is 

my public/auth.js, where the token is requested and received on the client. There may be a simple 

cookie-based process which is as secure as directly including the token in a request header, but I have 

not been able to find code I could easily apply to Firebase for doing so.

Relevant CWE-ID: Reliance on Cookies without Validation and Integrity Checking (CWE-565)

Relevant Public SCP: Unmatched

const uiConfig = {
// signInSuccessUrl: '<url-to-redirect-to-on-success>',
signInOptions: [

firebase.auth.GoogleAuthProvider.PROVIDER_ID,
// firebase.auth.FacebookAuthProvider.PROVIDER_ID,
…]}

- firebase.auth().onAuthStateChanged(function (user) {

* The text with red dashed box indicates the incorrect extraction result.

Code Missing: 
else {
- console.warn('You 
are an unauthorized 
user.')}})

+ document.cookie = '__session=' + token + ';max-age=' + (3600*24*7) /* Persistent 1 week */

Non-SCP-

related Coding 

Explanations

Non-SCP-

related Coding 
Examples

Inaccurate Matching of CWE and 

Public SCP

Fig. 9: The results of SCP specification extraction on the
motivating example (Fig 1).

SCP specifications in our experiment. We manually inspect
these SCP specifications and find the following three reasons:
• Non-SCP-related Code (6.2%). The code examples in the

security posts are not related to the SCPs, so SCPatcher
cannot match them to the CWEs and public SCPs.

• Inaccurate Extraction (2.4%). Due to the limitation of
SCPatcher, some extracted SCP specifications are inaccurate
and thus cannot be correctly matched to the CWEs and
public SCPs.

• Potential New Public SCPs (1.4%). Some SCP specifi-
cations may incorporate new public SCPs that have not
been incorporated by the OWASP. For example, the post
#72865733 proposes a novel SCP in Jul, 2022, indicating
that developers can utilize the Web Application Firewall
(WAF) to enhance the security of the K8s cloud systems.
However, this SCP has not been incorporated by OWASP.

D. Threat to Validity

There are internal, external, and constructive threats that
may affect the performances of SCPatcher.

Internal Threats. The first internal threat lies in the data
augmentation strategy we use. We augment the dataset from
3,907 posts to 11,091 posts using EDA augmentation. The
resulting augmented dataset may have semantic differences
from the original dataset. To alleviate it, we manually inspect
100 augmented samples and find that 94% of inspected



samples are correct, and only 6% of samples have slight
differences. The second internal threat comes from dataset
collection and preprocessing. We only collect the posts with
code blocks, even though some posts without code blocks may
have also been discussed on SCP specifications. To alleviate
it, we manually inspect 100 security posts that are filtered in
our data preparation, and find that less than 3% posts without
<code> tags have SCP specifications, so the effect of this
internal threat is small.

External Threat. The external threat may come from multi-
topic security posts. Due to the open and crowded nature of
Stack Overflow security posts, it is inevitable that developers
may discuss multiple topics in one post. For example, develop-
ers may post similar insecure practices for the questioners to
refer to, as well as their solutions for questioners’ security
issues. Since we only extract secure coding examples and
explanations from the Answer part, we would miss some
insecure coding examples and explanations from that part. In
future work, we plan to improve the area extraction to better
identify the areas in the post where the secure/insecure coding
examples and explanations may occur.

Constructive Threat. The constructive threat mainly comes
from the metrics we use. We choose Rouge-L, MToken, and
MLine to evaluate the extraction of coding examples. We also
choose Precision, Recall, and F1 to evaluate the performances
on extracting the coding explanations. We manually label the
LOC of coding examples, and the sentences of coding explana-
tions as the ground-truth while calculating these metrics. This
threat is mitigated by the fact that all the posts are reviewed
and discussed by the annotators when labeling the coding
examples and explanations.

VII. RELATED WORKS

Our work is related to the prior studies on analyzing secure
coding practices and analyzing crowd security discussions.

Analysis of Secure Coding Practices. The discussions
on secure coding practices have kept increasing in recent
years. Many works have been proposed to analyze secure
coding practices. Some works are focused on how to teach
SCPs. For example, Chi et al. [50] propose a method for
teaching SCPs on STEM students. Singleton et al. [51] propose
CryptoTutor, a novel method for teaching SCP with Misuse
Pattern Detection. Some other works are focused on applying
SCPs in software development. For example, Khalili et al. [52]
perform a case study on analyzing the SCPs in Industrial
Control Systems (ICS) by manually monitoring the real-world
industrial application. Meng et al. [53] analyze the SCPs
in Java programming, especially the Spring security and its
challenges. Anis et al. [54] propose a system to verify the
development of web applications with SCPs, and apply the
system on JavaScript applications. While SCPs are useful,
they can be difficult to follow in practice due to their lack of
details; thus, some previous works have proposed to enrich
SCPs. Khalili et al. [52] manually provide the details of
ICS SCPs from real-world industrial application. Gorski et
al. [55] mines the security-related information in non-security

API documents to support SCPs. Different from these SCP
enrichment works, this work is the first to automatically mine
crowd security discussions to extract the SCP specifications.

Analysis of Crowd Security Discussions. The crowd
security discussions in online knowledge-sharing platforms
have recently been studied by researchers. Some researchers
are interested in the linguistic features of security discussions.
Meyers et al. [56] studied security discussions from their
formality, informativeness, implicature, politeness, and uncer-
tainty. Some other researchers are interested in summarizing
the main topics of security discussions. Yang et al. [57] study
security concerns on the following topics: web security, mobile
security, cryptography, software security, and system security,
and analyze each topic’s popularity. Zahedi et al. [58] utilize
a qualitative analysis to summarize 26 topics on GitHub, and
extract the frequently occurring topics, such as “login”, “hash”,
and “password” etc.. Le et al. [59] applly topic a modeling
method, i.e., LDA, to identify 13 main security-related topics
on Stack Overflow. These studies are mainly concerned with
the characteristics of security discussions via topic modeling
and qualitative analysis. Different from them, our work focuses
on extracting the coding examples and explanations from the
crowd security discussions, so as to enrich public SCPs.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we introduce the SCPatcher, which is an au-
tomated approach to enrich secure coding practices by mining
crowd security discussions. SCPatcher first extracts the area
of coding examples and coding explanations with a fix-prompt
tuned LLM via Prompt Learning, Then, it hierarchically slices
the lengthy code to the coding examples and summarizes the
coding explanations based on the areas, Finally, SCPatcher
matches the CWE and Public SCP, and integrates them with
extracted coding examples and explanations to form the SCP
specifications. We collect the 3,907 security posts from Stack
Overflow, and augment it to the 11,091 posts. The experimen-
tal results show that SCPatcher outperforms all baselines in
extracting the coding examples with 2.73% MLine on average,
as well as coding explanations with 3.97% F1 on average.
Moreover, we apply SCPatcher on 447 posts to further evaluate
its practicality. The extracted SCP specifications enrich the
public SCP with 3,074 LOC and 1,967 sentences.

In the future, we plan to further improve our approach
with more extended datasets from other knowledge-sharing
platforms. We also plan to enrich more public SCPs, such as
those proposed by Google and UC Berkeley, to further evaluate
the practicality of SCPatcher.
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[39] J. E. Pérez, J. Dı́az, J. G. Martin, and B. Tabuenca, “Systematic
Literature Reviews in Software Engineering - Enhancement of the Study
Selection Process Using Cohen’s Kappa Statistic,” J. Syst. Softw., vol.
168, p. 110657, 2020.

[40] J. W. Wei and K. Zou, “EDA: easy data augmentation techniques for
boosting performance on text classification tasks,” in Proceedings of the
2019 Conference on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on Natural Language
Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7,
2019. Association for Computational Linguistics, 2019, pp. 6381–6387.

[41] S. Salimi and M. Kharrazi, “Vulslicer: Vulnerability detection through
code slicing,” J. Syst. Softw., vol. 193, p. 111450, 2022.

[42] S. Liu, G. Lin, Q. Han, S. Wen, J. Zhang, and Y. Xiang, “Deepbalance:
Deep-learning and fuzzy oversampling for vulnerability detection,” IEEE
Trans. Fuzzy Syst., vol. 28, no. 7, pp. 1329–1343, 2020.

[43] M. T. B. Nazim, M. J. H. Faruk, H. Shahriar, M. A. Khan, M. Masum,
N. Sakib, and F. Wu, “Systematic analysis of deep learning model for
vulnerable code detection,” in 46th IEEE Annual Computers, Software,
and Applications Conferenc, COMPSAC 2022, Los Alamitos, CA, USA,
June 27 - July 1, 2022. IEEE, 2022, pp. 1768–1773.

[44] Y. Liu and M. Lapata, “Text summarization with pretrained encoders,”
in Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on
Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong,
China, November 3-7, 2019. Association for Computational Linguistics,
2019, pp. 3728–3738.

[45] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,
V. Stoyanov, and L. Zettlemoyer, “BART: denoising sequence-to-
sequence pre-training for natural language generation, translation, and
comprehension,” in Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, ACL 2020, Online, July 5-10,
2020. Association for Computational Linguistics, 2020, pp. 7871–7880.

[46] C.-Y. Lin, “Rouge: a package for automatic evaluation of summaries,”
in Workshop on Text Summarization Branches Out, Post-Conference
Workshop of ACL 2004, Barcelona, Spain, July 2004, pp. 74–81.

[47] V. Cochard, D. Pfammatter, C. T. Duong, and M. Humbert, “Investigat-
ing graph embedding methods for cross-platform binary code similarity
detection,” in 7th IEEE European Symposium on Security and Privacy,
EuroS&P 2022, Genoa, Italy, June 6-10, 2022. IEEE, 2022, pp. 60–73.

[48] S. M. LaValle, M. S. Branicky, and S. R. Lindemann, “On the relation-
ship between classical grid search and probabilistic roadmaps,” Int. J.
Robotics Res., vol. 23, no. 7-8, pp. 673–692, 2004.

[49] X. L. Li and P. Liang, “Prefix-tuning: Optimizing continuous prompts

for generation,” in Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing, ACL/IJCNLP 2021,
(Volume 1: Long Papers), Virtual Event, August 1-6, 2021. Association
for Computational Linguistics, 2021, pp. 4582–4597.

[50] H. Chi, E. L. Jones, and J. Brown, “Teaching secure coding practices to
STEM students,” in Proceedings of the 2013 Information Security Cur-
riculum Development Conference, InfoSecCD 2013, Kennesaw, Georgia,
USA, October 12, 2013. ACM, 2013, pp. 42–48.

[51] L. Singleton, R. Zhao, M. Song, and H. P. Siy, “Cryptotutor: Teaching
secure coding practices through misuse pattern detection,” in SIGITE
’20: The 21st Annual Conference on Information Technology Education,
Virtual Event, USA, October 7-9, 2020. ACM, 2020, pp. 403–408.

[52] A. Khalili, A. Sami, M. Azimi, S. Moshtari, Z. Salehi, M. Ghiasi,
and A. A. Safavi, “Employing secure coding practices into industrial
applications: a case study,” Empir. Softw. Eng., vol. 21, no. 1, pp. 4–16,
2016.

[53] N. Meng, S. Nagy, D. D. Yao, W. Zhuang, and G. A. Arango-Argoty,
“Secure coding practices in java: challenges and vulnerabilities,” in Pro-
ceedings of the 40th International Conference on Software Engineering,
ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018. ACM, 2018,
pp. 372–383.

[54] A. Anis, M. Zulkernine, S. Iqbal, C. Liem, and C. Chambers, “Securing
web applications with secure coding practices and integrity verification,”
in 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure
Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th
Intl Conf on Big Data Intelligence and Computing and Cyber Science
and Technology Congress, DASC/PiCom/DataCom/CyberSciTech 2018,
Athens, Greece, August 12-15, 2018. IEEE Computer Society, 2018,
pp. 618–625.
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