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Large Language Models (LLMs), such as ChatGPT, have demonstrated impressive capabilities in automatically
generating code from provided natural language requirements. However, in real-world practice, it is inevitable
that the requirements written by users might be ambiguous or insu�cient. Current LLMs will directly generate
programs according to those unclear requirements, regardless of interactive clari�cation, which will likely
deviate from the original user intents. To bridge that gap, we introduce a novel framework named Clari-

fyGPT, which aims to enhance code generation by empowering LLMs with the ability to identify ambiguous
requirements and ask targeted clarifying questions. Speci�cally, ClarifyGPT �rst detects whether a given
requirement is ambiguous by performing a code consistency check. If it is ambiguous, ClarifyGPT prompts
an LLM to generate targeted clarifying questions. After receiving question responses, ClarifyGPT re�nes
the ambiguous requirement and inputs it into the same LLM to generate a �nal code solution. To evaluate
our ClarifyGPT, we invite ten participants to use ClarifyGPT for code generation on two benchmarks:
MBPP-sanitized and MBPP-ET. The results show that ClarifyGPT elevates the performance (Pass@1) of
GPT-4 from 70.96% to 80.80% on MBPP-sanitized. Furthermore, to conduct large-scale automated evaluations
of ClarifyGPT across di�erent LLMs and benchmarks without requiring user participation, we introduce a
high-�delity simulation method to simulate user responses. The results demonstrate that ClarifyGPT can
signi�cantly enhance code generation performance compared to the baselines. In particular, ClarifyGPT
improves the average performance of GPT-4 and ChatGPT across �ve benchmarks from 62.43% to 69.60% and
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from 54.32% to 62.37%, respectively. A human evaluation also con�rms the e�ectiveness of ClarifyGPT in de-
tecting ambiguous requirements and generating high-quality clarifying questions. We believe that ClarifyGPT
can e�ectively facilitate the practical application of LLMs in real-world development environments.

CCS Concepts: • Software and its engineering→ Automatic programming; • Computing methodolo-

gies →Machine learning.
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1 INTRODUCTION

Code generation aims to produce a code snippet that satis�es the user’s intent expressed in a natural
language requirement. This task, o�ering potential cost savings, acceleration of programming activ-
ities, and facilitation of software development, has consequently garnered attention across various
domains, e.g., natural language processing, arti�cial intelligence, and software engineering. Recent
e�orts tackle this task by leveraging Large Language Models (LLMs) with billions of parameters,
such as ChatGPT [34] and CodeGen [33]. The LLMs take the natural language requirements (i.e.,
prompts) as inputs and output the corresponding code snippets, achieving remarkable progress in
code generation.
However, in real-world practice, due to the diversity of user experience and perspective, it is

inevitable that the requirements written by users might be ambiguous or insu�cient. For example,
the requirement “Write a function to sort a list of elements” does not specify whether the user
intends for the list to be sorted in ascending or descending order. Current LLMs do not handle
such ambiguous requirements: they rarely ask users to clarify these requirements and instead
directly generate programs that may deviate from the users’ needs [21]. Current LLMs-based
code generation approaches lack the mechanism of clarifying unclear requirements [20, 21], i.e.,
they directly generate programs according to those unclear requirements regardless of interactive
clari�cation. In contrast, when human developers encounter ambiguous requirements, they seek
additional information by interactively asking clarifying questions to the users. For the above
example, a simple clarifying question such as “Should the sorting be in ascending or descending
order?” could help disambiguate the requirement.
In light of this observation, we argue that empowering LLMs with the ability to automatically

ask clarifying questions for ambiguous requirements is necessary for improving the quality and
e�ciency of code generation. However, it is quite challenging to empower LLMs with this ability
due to the following barriers. (1) When to Ask Clarifying Questions? In practical development
environments, numerous requirements exist, including both ambiguous and unambiguous ones.
Failure to concentrate on questioning only the ambiguous requirements can lead to unnecessary
interactions between LLMs and users regarding well-de�ned requirements. These unnecessary
interactions, in turn, can diminish e�ciency and compromise the user experience. (2) What

Clarifying Questions Should be Asked? The quality of clarifying questions also in�uences
the e�ciency and performance of code generation. Precise and targeted questions aid users in
expressing their intents clearly, ensuring that the obtained responses are directly relevant to the
ambiguities present in the requirements. Vague or broad questions increase the risk of obtaining
o�-topic or irrelevant responses, potentially hindering LLMs from comprehending user intents.

In this paper, we propose a novel framework called ClarifyGPT that enhances LLM-based code
generation via requirements clari�cation. First, we employ a two-step code consistency check
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to decide when to ask clarifying questions. We are motivated by the observation that feeding
a clear requirement to LLMs usually results in generating diverse code snippets that behave
consistently, i.e., given the same test inputs, those di�erent code snippets will likely return the same
outputs. While feeding an unclear requirement, LLMs are likely to generate diverse code snippets
that behave di�erently. Speci�cally, in the �rst step, ClarifyGPT aims to generate numerous
high-quality test inputs for a given requirement via type-aware mutation. In the second step,
ClarifyGPT inputs the given requirement into an LLM to sample = code solutions and checks
whether they produce identical outputs when tested with the generated input. If the outputs are
not identical, ClarifyGPT determines that the requirement requires further clari�cation; and vice
versa. Second, we employ the reasoning-based prompting for generating clarifying questions.
Initially, ClarifyGPT directs LLMs to analyze the factors contributing to the ambiguity of the
given requirement by comparing code solutions with di�erent functionalities. Subsequently, it
formulates targeted clarifying questions based on the results of this analysis. By comparing these
di�erent code implementations, potential points of ambiguity in the requirements can be readily
identi�ed. After detecting the points of ambiguity in the requirements, the LLMs can generate
targeted clarifying questions for them. Finally, ClarifyGPT re�nes the original requirement based
on the generated questions and their responses and generates the �nal code solution.

To assess the e�ectiveness of ClarifyGPT, we �rst integrate GPT-4 [35] into ClarifyGPT and
recruit ten participants to evaluate its performance on two public benchmarks (MBPP-sanitized [5],
and MBPP-ET [11]). The results show that ClarifyGPT elevates the performance (Pass@1) of
GPT-4 on MBPP-sanitized from 70.96% to 80.80%, improves the performance (Pass@1) of GPT-4 on
MBPP-ET from 51.52% to 60.19%. Besides, due to requiring the involvement of human participants,
evaluating ClarifyGPT could be very expensive and hard to reproduce. To perform automated
evaluations of ClarifyGPT across di�erent LLMs and benchmarks without requiring user partici-
pation, we introduce a high-�delity simulation method to simulate user feedback. We then conduct
comprehensive experiments on �ve benchmarks (HumanEval [9], HumanEval-ET [11], MBPP-
sanitized, MBPP-ET, and CoderEval [49]) using two state-of-the-art LLMs (i.e., GPT-4 and ChatGPT).
The results demonstrate that, in comparison with the default GPT-4, ClarifyGPT achieves an
average improvement of 11.66% across �ve benchmarks; in comparison with the default ChatGPT,
ClarifyGPT achieves an average improvement of 15.00% on �ve benchmarks. We also conduct
a human evaluation to assess the e�ectiveness of ClarifyGPT in detecting ambiguous require-
ments and generating high-quality clarifying questions, showcasing ClarifyGPT’s commendable
e�ectiveness in both tasks. Our main contributions are outlined as follows:

• Framework: We propose a novel framework, named ClarifyGPT, which enables LLMs to
detect ambiguous requirements and formulate targeted clarifying questions. ClarifyGPT
re�nes the ambiguous requirements based on the answers to clarifying questions and further
generates code solutions.

• User Simulation: We introduce a user simulation method for producing high-�delity simu-
lated answers to the clarifying questions, which facilitates automated evaluations of Clar-
ifyGPT across di�erent LLMs and benchmarks, eliminating the necessity for direct user
participation.

• Evaluation: We conduct extensive experiments on �ve widely-used benchmarks to show that,
ClarifyGPT achieves substantial improvements across di�erent models and benchmarks.
A human evaluation further con�rms the signi�cant potential of applying ClarifyGPT in
real-world practice.

• Data: publicly accessible dataset and source code [2] to facilitate the replication of our study
and its application in extensive contexts.
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2 BACKGROUND AND RELATED WORK

2.1 LLM-Based Code Generation

Code generation is a hot research topic for software engineering and arti�cial intelligence commu-
nities. Recently, many LLMs have been proposed for code generation. One class of models is the
encoder-decoder models, e.g., PLBART [3], CodeT5 [45], and AlphaCode [27], which generally en-
code an input text into a context embedding and decode the embedding to a code solution. Another
class of models is the decoder-only models that are trained with the next token prediction objective
and generate code from left to right. GPT series models [6, 9], PolyCoder [48], and InCoder [14] are
examples of such models. Among them, ChatGPT [34] and GPT-4 [35] are the state-of-the-art LLMs
developed by OpenAI. They have demonstrated improved understanding and reasoning abilities,
pro�ciency in comprehending the provided context, and the capacity to generate high-quality texts.

Since training or �ne-tuning these LLMs is highly expensive, there has also been a lot of research
focused on enhancing the performance of LLMs in code generation with minimal or no �ne-tuning.
Prompt Learning is one of the most important techniques for achieving this goal [12, 28, 31, 40, 47].
The Chain-of-Thought (CoT) [47] is a novel prompting engineering technique, which can elicit
LLMs to produce intermediate reasoning steps that lead to the �nal answer. It has shown impressive
performance in complex reasoning tasks (e.g., arithmetic and symbolic reasoning) [19, 47], and has
therefore been applied to code generation [17, 26]. Inspired by CoT, Li et al. [26] propose a new
prompting method, named Structured CoT (SCoT). Di�erent from CoT, SCoT explicitly introduces
code structures and teaches LLMs to generate intermediate reasoning steps with program structures.
Jiang et al. [17] propose a self-planning approach that can guide LLMs to understand code planning
with few-shot demonstrations and write corresponding code planning for the given requirement.
The aforementioned studies focus on leveraging and augmenting the reasoning capabilities of LLMs,
that is, prompting LLMs to generate intermediate reasoning steps to enhance code generation
performance. Nevertheless, they remain insu�cient in addressing the ambiguous requirements
provided by humans, as unclear user intent may mislead LLMs into producing incorrect reasoning
steps, thereby yielding inaccurate results. Our ClarifyGPT recognizes the importance of clarifying
ambiguous requirements and proposes a novel framework that enables LLMs to automatically detect
ambiguous requirements and ask targeted clarifying questions. By clarifying user requirements,
ClarifyGPT can generate code solutions that ful�ll the user’s intentions. GPT-Engineer [36] is a
recent open-source GitHub repository. It utilizes manual-designed instructions to prompt LLMs
to ask clarifying questions for the input user requirements, and then generates code snippets
based on user feedback. However, GPT-Engineer asks clarifying questions for both ambiguous
and unambiguous requirements, which is detrimental to the user experience and may result in
incorrect code solutions1. In contrast, ClarifyGPT can detect ambiguous requirements by checking
whether the test outputs of sampled code solutions are identical. Furthermore, ClarifyGPT employs
prompting techniques to direct LLMs to �rst analyze the factors contributing to requirement
ambiguity and then formulate targeted questions.

2.2 Clarifying�estion Generation

The task of generating clarifying questions for ambiguous queries or dialogues has received much
attention in information retrieval and dialogue system �elds [10, 18, 20, 30, 37, 41]. In terms of
information retrieval, many studies have pointed out that clarifying questions can help resolve
ambiguous queries and improve user experience. For example, Wang and Li [43] �nd that search
queries are often short and the underlying user intents are often ambiguous. They propose an
e�ective template-guided clarifying question generation model, which employs Transformer to

1https://github.com/AntonOsika/gpt-engineer/issues/708
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select a question template from a list of template candidates and �ll in the question slot from a
slot vocabulary. Eberhart and McMillan [13] propose a novel method to ask clarifying questions
for query re�nement, which utilizes a task extraction algorithm to identify query aspects and
follows a rule-based procedure to generate questions. In terms of the dialogue system domain,
both rule-based and learning-based approaches have been proposed. Dhole [10] proposes a novel
method of generating discriminative questions by leveraging a simple rule-based system, which
aims at seeking clari�cation from the user, thereby reducing the roboticity of the conversation
and making the interaction considerably natural. Rao et al. [37] describe a method for generating
clarifying questions, which uses a seq2seq model to generate a question given a context and utilizes
another seq2seq model to generate an answer given the context and the question.
In code generation, dealing with ambiguous user requirements has received little attention so

far. To the best of our knowledge, Li et al. [25] is the only research paper that addresses ambiguous
requirements resolution for code generation. This work aims to clarify the ambiguous requirements
missing key operations, e.g., API calls. It �rst collects a dataset named Code ClarQA containing
natural language requirements, code, clarifying questions, and answers. Then, it proposes a code
generation pipeline that can select relevant clarifying questions and their answers from the dataset
for a given requirement for generating a code solution. However, the scope of applicability for this
work is limited. Firstly, it primarily focuses on clarifying operational-level ambiguities, leaving
other forms of ambiguity, such as semantic ambiguities in natural language requirements, less
e�ectively addressed. Furthermore, it heavily relies on the constructed dataset, retrieving relevant
questions for ambiguous requirements. If the dataset lacks similar requirements, the method’s
performance may su�er. Di�ering from this work, ClarifyGPT is not limited to a speci�c type of
ambiguous requirements clari�cation. ClarifyGPT can generate precise and targeted questions for
various requirements by leveraging the powerful understanding ability of LLMs.

3 APPROACH

In this section, we introduce ClarifyGPT, a code generation framework for LLMs. Figure 1 illus-
trates the overview of ClarifyGPT, which consists of four main stages: (1) Test Input Generation
(Section 3.1), aiming at generating high-quality test inputs for a given requirement by using prompt-
ing techniques and heuristic mutations; (2) Code Consistency Check (Section 3.2), for leveraging
the generated test inputs to conduct a consistency evaluation, and then identifying the ambiguous
requirements; (3) Reasoning based question generation (Section 3.3), focused on generating
targeted clarifying questions for the identi�ed ambiguous requirements by prompting LLMs to
engage in intermediate reasoning; (4) Enhanced Code Generation (Section 3.4), which incorpo-
rates the clarifying questions and their feedback to re�ne the original requirement and generate
the �nal code solution based on the re�ned prompt. Below, we provide details for each stage in
ClarifyGPT.

3.1 Test Input Generation

In this step, ClarifyGPT aims to produce high-quality test inputs to e�ectively distinguish between
code solutions with di�erent functionalities. There are many studies have attempted to employ
LLMs for unit test case generation [24, 38, 42] and have demonstrated impressive performance.
Following prior work [29], ClarifyGPT leverages LLMs as the test input generator and generates
test inputs by adopting a two-step approach (i.e., seed input initialization and type-aware mutation).
Speci�cally, ClarifyGPT begins by designing a prompt to instruct an LLM in creating a set of
seed inputs. It then performs type-aware mutations to generate a large number of new inputs. Our
insights are twofold: (1) on one hand, since LLMs possess powerful understanding and reasoning
abilities, using them as test input generators can produce high-quality inputs that remain valid
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Fig. 1. The Overview of ClarifyGPT

even under semantic constraints. Traditional input generators often face challenges in ensuring
compliance with such semantic constraints. (2) on the other hand, LLMs are unsuitable for large
amounts of automated test generation due to undesired speed and cost of querying such large
models [29]. Thus, we utilize a heuristic mutation-based method to accelerate the generation of
numerous test cases, ensuring both stability and reliability.

3.1.1 Seed Input Initialization. ClarifyGPT starts with designing a prompt for seed input initial-
ization. As shown in Figure 2 (a), the prompt consists of three parts: (1) an instruction, designed to
elicit LLMs to generate complex, di�cult, and corner-case test inputs; (2) few-shot manually-crafted
demonstrations, including a user requirement and ground-truth test inputs, which can assist LLMs
in better understanding the task described in the instruction; (3) a query, for which LLMs generate
input tests based on it. Speci�cally, we �rst �nalize the prompt with the instruction, demonstrations,
and the given requirement. Then, ClarifyGPT utilizes the prompt to query LLMs to generate seed
inputs. Finally, we collect these generated seed inputs to initialize a seed pool that will be used for
mutation.

3.1.2 Type-Aware Input Mutation. After initializing a seed pool, ClarifyGPT employs a type-
aware input mutation strategy [29] to generate higher-quality test inputs. Speci�cally, our approach
follows the standard mutation-based fuzzing work�ow [50, 51]: (1) At each iteration, an input is
randomly selected from the seed pool. (2) For the selected input, we inspect its data types and
perform a single mutation operation consistent with its type to create a new test case. The basic
mutations used for di�erent types of inputs are illustrated in Table 1. For simple data types, such as
int and �oat, one mutation operation simply increases or decreases its value by 1. For compound
types, we mutate the elements based on their internal types. (3) After completing a round of
mutations, we add the newly generated inputs to the seed pool and repeat the aforementioned
process until we attain the desired number of generated inputs.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 103. Publication date: July 2024.
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Table 1. List of basic type-aware mutations over input G [29]

Type Mutation Type Mutation

8=C |5 ;>0C Returns G ± 1 !8BC

{

Remove/repeat a random item G [8]

Insert/replace G [8] with Mutate(G [8])
1>>; Returns a random boolean )D?;4 Returns )D?;4 (Mutate(!8BC (G)))
#>=4)~?4 Returns #>=4 (4C Returns (4C (Mutate(!8BC (G)))

BCA

{ Remove a substring B
Repeat a substring B
Replace B with Mutate(B)

�82C

{ Remove a key/value pair : → E

Update : → E to : → Mutate(E)
Insert Mutate(:)→ Mutate(E)

3.2 Code Consistency Check

A clear user requirement should be easy to understand and leave no room for interpretation, while
an ambiguous user requirement can lead to stakeholders interpreting it in di�erent ways. Inspired
by this, we make an assumption that, for a given requirement, if an LLM generates numerous
code solutions with di�erent functionalities, it signi�es that the requirement can lead to the LLM
interpreting it in di�erent ways. Consequently, such a requirement necessitates further clari�cation
and re�nement. In light of this assumption, we propose a simple yet e�cient method to determine
ambiguous requirements. First, we feed a given requirement into an LLM to sample = code solutions.
Then, these code solutions are executed with test inputs generated in the previous step. We obtain
the test outputs of these programs and compare the test outputs to inspect whether they are
identical. If the outputs are identical, ClarifyGPT considers these code solutions as interpreting
the requirement in the same way, thus identifying the requirement as unambiguous. In this case,
one of the sampled codes would be output as the �nal code solution. However, if the outputs
are not identical, ClarifyGPT believes the LLM has di�erent understandings of this requirement
when it produces code solutions and identi�es the requirement as ambiguous. For these ambiguous
requirements, as shown in Figure 1, we perform code clustering, which involves dividing these code
solutions into several groups based on their test outputs. Subsequently, ClarifyGPT randomly
chooses one code solution from each group and feeds these inconsistent code solutions into the
next component to synthesize the prompt used for asking questions.

3.3 Reasoning Based�estion Generation

Targeted clarifying questions facilitate users in articulating their intentions with clarity, ensuring
that the responses obtained are directly pertinent to the unclear parts within the requirements.
Vague or broad questions increase the risk of getting o�-topic or irrelevant responses, which may
hurt the performance of code generation. Therefore, upon identifying ambiguous requirements, it
becomes essential to empower LLMs with the capability to craft precise and targeted questions. To
achieve this objective, we devise a reasoning-based prompt aimed at directing LLMs to initially
scrutinize the factors contributing to the ambiguity of the requirement and subsequently formulate
targeted questions grounded in the analysis. The designed prompt is depicted in Figure 2 (b). It
includes three parts: (1) an instruction, which describes the task (i.e., clarifying question generation)
we want the LLMs to solve; (2) few-shot <requirement, inconsistent solutions, clarifying questions>
triples as demonstrations, which help LLMs in understanding and solving the task; (3) a query,
containing a user requirement and its code solutions, which is fed to LLMs for generating questions.

Speci�cally,ClarifyGPT constructs the prompt to direct LLMs to analyze the factors contributing
to the unclear requirement by understanding the functionalities of these inconsistent code solutions
and comparing their disparities. The motivation is that, in software development, code solutions
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Fig. 2. The details of the prompts used in ClarifyGPT

represent the speci�c implementation of requirements. If a requirement is ambiguous, di�erent
developers may have di�erent interpretations and consequently write di�erent code. Some of these
inconsistent code solutions are incorrect or not in line with the original intent. By comparing
these di�erent code implementations, potential points of ambiguity in the requirements can be
easily identi�ed. After detecting the points of ambiguity in the requirements, the LLMs continue to
generate targeted clarifying questions based on the detection results.

Our proposed prompting shares a similar idea with the Chain of Thought (CoT) [47] prompting,
which elicits LLMs to generate intermediate reasoning steps (analysis of the factors contributing
to ambiguity) �rst, and then produce �nal results (targeted clarifying questions) based on these
intermediate reasoning steps. In this way, ClarifyGPT encourages LLMs to perform “far-ahead

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 103. Publication date: July 2024.
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planning” [7], enabling them to better leverage their reasoning and comprehension abilities to
enhance the quality of the generated questions.

3.4 Enhanced Code Generation

Once user responses are captured, ClarifyGPT combines them with the generated questions to
re�ne the original requirement into a clear one. In particular, as shown in the query in Figure 2
(d), we pair each question and its corresponding answer to create a clari�cation, which are then
appended to the end of the docstring to form the re�ned requirement. By re�ning an ambiguous
requirement in this way, we can preserve the structural integrity of the docstring in the original
requirement while enhancing it with additional clarifying information. Subsequently, we use the
re�ned requirement to construct a prompt to instruct LLMs in generating the �nal code solution.
The constructed prompt also consists of three parts, i.e., an instruction, some demonstrations, and
a query, as depicted in Figure 2 (d).

4 EXPERIMENTAL DESIGN

To evaluate the e�ectiveness of ClarifyGPT, we conduct comprehensive experiments. In this
section, we illustrate our experimental design, including research questions, models, benchmarks,
metrics, baselines, and implementation details.

4.1 Research �estions

We address the following three research questions to assess the performance of ClarifyGPT.
RQ1: How does the ClarifyGPT perform when receiving real user feedback in compar-

ison to baseline approaches? In real-world scenarios, ClarifyGPT assists users in writing code
by interacting with them, i.e., asking for clari�cation and receiving user feedback. Thus, in this
RQ, we explore whether ClarifyGPT with humans in the loop can achieve higher performance
than existing code generation baselines. Since evaluating interactive code generation with human
participants is costly, we only select GPT-4 as the base model, and hire ten participants (includ-
ing academic researchers and industry developers) to manually answer the clarifying questions
generated by ClarifyGPT. We compare ClarifyGPT to three baselines on two benchmarks (i.e.,
MBPP-sanitized and MBPP-ET).

RQ2: How does the ClarifyGPT perform when receiving simulated user feedback com-

pared to the state-of-the-art baseline approaches? This RQ performs large-scale automated
evaluations of ClarifyGPT across di�erent LLMs and benchmarks without requiring user partici-
pation, which aims to further verify whether ClarifyGPT can achieve higher performance than
existing code generation baselines. We �rst propose a user simulation method that leverages LLMs
to simulate user feedback. Then, we apply three baselines and ClarifyGPT to two representative
LLMs (i.e., GPT-4 and ChatGPT), and evaluate their performance on �ve widely-used benchmarks
(i.e., HumanEval, MBPP-sanitized, HumanEval-ET, MBPP-ET, and CoderEval).

RQ3: How does the number of demonstrations in a prompt impact the performance of

ClarifyGPT? Prompting techniques could be sensitive to the number of demonstrations [15, 32].
In this research question, we measure the performance of ClarifyGPT with varying numbers of
demonstrations to investigate the prompt robustness of ClarifyGPT.

4.2 Studied LLMs

There are many LLMs available for code generation. However, the speci�c context of this work
necessitates that the LLMs possess a certain level of communicative competence, that is, the ability
to comprehend human instructions and formulate clarifying questions. Thus, the LLMs without
instruction tuning (e.g., InCoder [14] and CodeGen [33]) are not suitable as the base models applied
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to ClarifyGPT framework. In this work, we select two representative chat-LLMs (i.e., ChatGPT
and GPT4) as base models to evaluate ClarifyGPT framework.

• ChatGPT [34] is one of the most powerful chat models empowered by OpenAI. It is trained
using a novel approach called Reinforcement Learning from Human Feedback (RLHF), which
seamlessly integrates reinforcement learning and human feedback. Speci�cally, ChatGPT is �rst
trained with vast amounts of natural language text and code �les. Then, it is �ne-tuned through
reinforcement learning, enabling it to adeptly comprehend and execute human instructions. In
our experiments, We use OpenAI’s API to access the ChatGPT model, i.e., gpt-3.5-turbo.

• GPT-4 [35] is OpenAI’s most advanced LLM, which can accept image and text inputs, emit text
outputs. It is also trained with reinforcement learning and learns to follow human instructions.
GPT-4 has demonstrated improved language understanding, allowing it to comprehend complex
and nuanced contexts, making it highly e�ective on many downstream tasks, including text
summarization, translation, and code generation [7]. In our experiments, we use OpenAI’s API
to access the GPT-4 model, i.e., gpt-4-turbo.

4.3 Benchmarks

Following the previous work [8, 12, 17, 26], we select public code generation benchmarks, namely
HumanEval [9], MBPP-sanitized [5], along with their extended test case versions (i.e., HumanEval-
ET and MBPP-ET [11]) for our experimental evaluation. Additionally, to assess ClarifyGPT’s
e�cacy in practical development contexts, we include experiments on a pragmatic code generation
benchmark, CoderEval [49]. The statistics of these benchmarks are shown in Table 2.

• HumanEval [9] is a hand-written problem-solving dataset crafted subsequent to the cut-o�
date of Codex’s training dataset, consisting of 164 Python programming problems. Programming
problems in the HumanEval concern language comprehension, algorithms, and mathematics.
Each problem includes a function signature, a natural language requirement, and several unit
tests. A problem is considered solved by code-LLMs when all unit tests are passed.

• MBPP-sanitized [5] is a hand-veri�ed subset of MBPP (Mostly Basic Programming Problems)
dataset, which contains 427 crowd-sourced Python programming problems, involving numeric
manipulations, standard libraries functionality, and more. Each problem contains a function
signature, a user requirement, and three test cases.

• HumanEval-ET and MBPP-ET [11] are two extended versions of HumanEval and MBPP
benchmarks with an average of 100+ additional test cases per problem. To improve the reliability
of generated code evaluation, they collect many edge test cases that are not included in original
benchmarks.

• CoderEval [49] is a benchmark of pragmatic code generation. Compared with the widely used
HumanEval and MBPP benchmarks, CoderEval includes non-standalone functions that are
collected from various open-source projects. We evaluate ClarifyGPT on the Java version of
CoderEval, which contains 230 Java programming tasks. Speci�cally, given that ClarifyGPT
requires generating test inputs for code consistency check, while accurately generating non-built-
in types of inputs (such as user-de�ned variables or objects) poses a challenge for current LLMs
and is not the scenario that this paper focuses on. Therefore, we exclude the programming tasks
with non-built-in types of input arguments in CoderEval, leaving 163 programming tasks for
evaluation. To assess the performance of di�erent methods on CoderEval, we use an evaluation
platform [1], which provides a ready runtime environment with automatic programs to verify
the code generated by code models.
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Table 2. Statistics of benchmarks: the total number of problems in the benchmark (Problem Nums), the

average number of test cases per problem (AVG.Tests per Problem), and the average/maximum/minimum

number of prompt words in the benchmark (AVG/MAX/MIN.Words in Prompt).

Benchmark HumanEval HumanEval-ET MBPP-sanitized MBPP-ET CoderEval

Problem Nums 164 164 427 427 163

AVG.Tests per Problem 7.8 107.5 3.1 101.7 -

AVG.Words in Prompt 67.7 67.7 14.5 14.5 42.84

MAX.Words in Prompt 249 249 47 47 103

MIN.Words in Prompt 17 17 7 7 8

4.4 Evaluation Metrics

We evaluate the accuracy of the generated code using the metric Pass@: [22]. This metric serves
as an estimator of the generational capabilities under a speci�c budget, which is widely used in
previous LLM-related studies [8, 23, 52]. For each problem in the benchmarks, we generate : code
solutions, and if any of the : code solutions passes all tests, this problem is considered solved. In
real-world development scenarios, generating : code will impose a burden on developers, that
is, they need to read and understand : di�erent code and select one as the target code. Thus,
in this paper, the : is set to 1, which satis�es most scenarios where developers consider only
single-generated code [12, 17]. To avoid high variance and randomness, we run each approach
three times and report the average results as the �nal results.

4.5 Comparison Baselines

• Default LLM: takes the original requirements directly from benchmarks as inputs to prompt
LLMs for code generation.

• CoT (Chain-of-Thought) [47]: generates a series of reasoning steps for each requirement by
using the CoT prompt and then generates the corresponding code. To ensure the fairness of
comparison, the CoT baseline has the same number of demonstrations (i.e., three demonstrations)
and demonstration seeds.

• GPT-Engineer2: is a recent open-source GitHub repository. It utilizes manual-designed instruc-
tions to elicit LLMs to ask clarifying questions for the input user requirements and then generates
code snippets based on user feedback.

4.6 Implementation Details

The implementation details of constructing prompts and con�guring models in ClarifyGPT are as
follows.
Prompt Construction. Following previous work [44, 47], we select the �rst three problems

from each benchmark and extract the user requirements from these problems as demonstration
seeds. We use the remaining problems (except for the �rst three problems) from each benchmark
as the test set. Subsequently, we manually create distinct demonstrations for various prompts, as
illustrated in Figure 2. It should be noted that the reason we only create three demonstrations for
each prompt is due to the input length limit of LLMs.

Model Con�guration. We treat the two LLMs used in the experiments as black box generators
and only set a few interface parameters they provide without accessing internal parameters. For all
LLMs, we set the top p to 0.95, the frequency_penalty to 0. Themax_tokens represents the maximum
number of tokens to be generated, which is set to 800 for the prompt of asking clarifying questions

2https://github.com/AntonOsika/gpt-engineer
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and 300 for other prompts. In particular, we set the temperature to 0, except when sampling code
solutions, for which the temperature is set to 0.8. We follow Chen et al. [9] to truncate the generated
content generated by �ve stop sequences: “\nclass”, “\ndef”, “\n#”, “\nif”, and “\nprint”.

5 RESULTS AND ANALYSIS

5.1 RQ1: Performance with Real User Feedback

Setup. In this RQ, we explore how ClarifyGPT performs in real-world scenarios, that is, whether
ClarifyGPT can achieve higher performance than existing code generation baselines when receiv-
ing real user feedback. Speci�cally, we apply ClarifyGPT to the GPT-4 model. Since MBPP-ET
benchmark shares the same user requirements as MBPP-sanitized, we only apply ClarifyGPT

to the original versions of the benchmark (i.e., MBPP-sanitized) and report ClarifyGPT’s perfor-
mance on these two benchmarks using their respective unit tests. ClarifyGPT �rst takes the user
requirement of each problem in the benchmarks as input and determines them as ambiguous or
unambiguous. Then, it generates clarifying questions for the ambiguous requirements. In total,
ClarifyGPT identi�ed 287 problems with unambiguous requirements and 140 problems with
ambiguous requirements from MBPP-sanitized benchmark. We collected these 140 ambiguous
problems along with their clarifying questions generated by ClarifyGPT. The average number of
clarifying questions per problem is 2.85. We crafted three identical questionnaires for each problem,
ensuring that each problem would be assessed by three di�erent participants. Each questionnaire
consists of three elements: (1) the (ambiguous) requirement of the problem, which describes the
problem’s intent; (2) the unit test cases containing expected input-output examples, which assist
participants in understanding the problem’s intent; (3) the generated clarifying questions, which
participants are required to answer.

We recruited ten participants, including three Ph.D. students, two Master’s students, two senior
researchers, and three industry developers. None of them are co-authors of this paper. All partic-
ipants have at least three years of experience in Python development, with six of them having
more than �ve years of experience. Participants were initially provided with task descriptions and
example questionnaires that contained appropriate question answers. After completing a training
exercise, we assigned 42 problems to each participant and asked them to respond to the clarifying
questions based on the information provided in the questionnaires. Each problem will be solved by
three participants.
We collected the answers provided by the participants and input them into ClarifyGPT to

generate �nal code solutions. As mentioned earlier, we evaluated the correctness of the generated
code on the two benchmarks using the unit test cases. Since each problem’s clarifying questions
were answered by three participants, we report the average Pass@1 results.
Results. The comparison results between the performance of ClarifyGPT receiving human
feedback and other baselines are depicted in Table 3. The values in red are ClarifyGPT (Human
Feedback)’s relative improvements compared to the Default baseline.
We can see that ClarifyGPT (Human Feedback) achieves the best performance on the two

benchmarks. Compared with the Default, ClarifyGPT (Human Feedback) exhibits signi�cant
improvements in Pass@1, achieving an increase of 13.87% on MBPP-sanitized (p-value=3.2e-05)
and 16.83% on MBPP-ET (p-value=7.3e-05). Furthermore, when compared to the best-performing
baselines (i.e., CoT or GPT-Engineer), ClarifyGPT (Human Feedback) also yields substantial
improvements in Pass@1, showcasing enhancements of 9.53% on MBPP-sanitized (p-value=1.7e-04)
and 9.52% on MBPP-ET (p-value=4.3e-04). This is mainly because ClarifyGPT can pro�ciently
identify ambiguous requirements and raise targeted clari�cation questions. Users easily clarify
their intentions by responding to these questions, thus facilitating the generation of more correct
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Table 3. The Pass@1(%) of ClarifyGPT receiving human feedback and baselines on two benchmarks. Numbers

in red denote ClarifyGPT (Human Feedback)’s relative improvements compared to the Default.

Methods
GPT-4

MBPP-sanitized MBPP-ET Average

Default 70.96 51.52 61.24

CoT 72.68 53.79 63.24

GPT-Engineer 73.77 54.96 64.37

ClarifyGPT (Human Feedback) 80.80 60.19 70.50

Relative Improvement 13.87% ↑ 16.83% ↑ 15.35% ↑

code by LLMs. It indicates that ClarifyGPT, as an interactive code generation framework, can
support developers in writing code within real-world development contexts.

Answering RQ1: ClarifyGPT (Human Feedback) elevates the performance (Pass@1) of GPT-4
on MBPP-sanitized from 70.96% to 80.8%; elevates its performance on MBPP-ET from 51.52% to
60.19%. The relative improvement is 15.35% on average, outperforming the baselines.

5.2 RQ2: Performance with Simulated User Feedback

Setup. Due to the involvement of human participants, evaluating the interactive code generation
framework ClarifyGPT is very expensive and hard to reproduce. A relatively simple solution is to
conduct an o�ine evaluation [4]. However, it limits the system to selecting clarifying questions from
a set of pre-de�ned or labeled questions, which does not transfer well to the practical development
environment. In this RQ, we apply the User Simulation for Evaluation [16, 39] method to facilitate
automated evaluations of ClarifyGPT across various LLMs and benchmarks, eliminating the
necessity for direct user participation.
The most crucial aspect of simulating user feedback is to ensure that the created user feedback

closely resembles the real feedback users would provide in the same environment. Low-�delity
simulations can result in ClarifyGPT receiving feedback that is challenging to encounter in actual
practice, thereby yielding misleading outcomes and impacting our evaluation of ClarifyGPT’s
performance. Hence, we propose a high-�delity user simulation method that leverages LLMs
to generate user responses by providing LLMs with clarifying questions and ground-truth test
cases. Our key insight is that the ground-truth test cases contain expected input-output examples,
re�ecting the desired functionality sought by users. Endowing LLMs with this prior knowledge
facilitates their understanding of user intent and enables the generation of high-�delity simulated
user feedback. To instruct LLMs to solve this task, we design a prompt (as shown in Figure 2), which
also consists of three parts: (1) an instruction, which describes the task (i.e., simulating the user
responses) we want the LLMs to solve; (2) few-shot <requirement, ground-truth tests, clarifying
questions, answers> quadruples as demonstrations, which help LLMs in understanding and solving
the task; (3) a query, containing a user requirement and its ground-truth tests, which is fed to LLMs
for generating simulated responses.

We apply three baselines (Section 4.5) and our ClarifyGPT to two SOTA LLMs (Section 4.2). We
evaluate them on �ve benchmarks (Section 4.3) and compare their performance by calculating the
Pass@1 metric (Section 4.4). To ensure a fair comparison, all baselines adopt the same experimental
setup as our ClarifyGPT. Particularly, as GPT-Engineer also requires user feedback for code
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Table 4. The Pass@1(%) of ClarifyGPT receiving simulated feedback and baselines on five benchmarks.

Numbers in red denote ClarifyGPT (Simulated Feedback)’s relative improvements compared to the Default.

Methods HumanEval HumanEval-ET MBPP-sanitized MBPP-ET CoderEval Average

ChatGPT

Default 64.63 57.32 65.57 46.68 37.42 54.32

CoT 68.70 60.37 66.59 49.18 39.47 56.86

GPT-Engineer 66.26 59.76 69.09 50.20 38.24 56.71

ClarifyGPT (Simulated Feedback) 74.39 64.84 74.08 55.58 42.94 62.37

Relative Improvement 15.10% ↑ 13.12% ↑ 12.98% ↑ 19.07% ↑ 14.75% ↑ 15.00% ↑

GPT-4

Default 78.86 70.73 70.96 51.52 40.08 62.43

CoT 80.10 72.56 72.68 53.79 42.13 64.25

GPT-Engineer 79.27 71.75 73.77 54.96 41.10 64.17

ClarifyGPT (Human Feedback) \ \ 80.80 60.19 \ 70.50

ClarifyGPT (Simulated Feedback) 87.80 78.05 78.69 58.47 44.99 69.60

Relative Improvement 11.34% ↑ 10.35% ↑ 10.89% ↑ 13.49% ↑ 12.25% ↑ 11.66% ↑

generation, we apply the same user simulation methods utilized by ClarifyGPT to facilitate
GPT-Engineer in acquiring feedback.
Results. Table 4 presents the comparison results between the performance of ClarifyGPT

receiving simulated feedback and other baselines in terms of code generation. The values in red are
ClarifyGPT (Simulated Feedback)’s relative improvements compared to the Default baseline.
Overall, ClarifyGPT (Simulated Feedback) can signi�cantly improve the performance of code

generation, achieving gains across di�erent LLMs and datasets (all the p-values are substantially
smaller than 0.001). For GPT-4 model, compared with the Default baseline, ClarifyGPT (Simulated
Feedback) demonstrates notable improvements in Pass@1 performance, achieving an increase of
11.34% on HumanEval, 10.35% on HumanEval-ET, 10.89% on MBPP-sanitized, 13.49% on MBPP-ET,
and 12.25% on CoderEval. For ChatGPTmodel, when compared to the Default baseline, ClarifyGPT
(Simulated Feedback) improves the performance of Pass@1 by 15.10%, 13.12%, 12.98%, 19.07%, and
14.75% on the �ve benchmarks, respectively. The results demonstrate that ClarifyGPT, which
empowers LLMs to autonomously generate clarifying questions and re�ne user requirements based
on user feedback, facilitates users in clarifying their intentions, thereby enhancing code generation
performance by capturing user intentions.

We also note that, in comparison to the most related baseline (i.e., GPT-Engineer), ClarifyGPT
(Simulated Feedback) exhibits superior performance with respect to the Pass@1 metric. Speci�cally,
it achieves an average improvement of 11.45%, 8.65%, 6.95%, 8.56%, and 10.88% across the �ve
benchmarks. We attribute the improvements to our novel techniques, i.e., ambiguous requirement
identi�cation and clarifying question generation. Posing clarifying questions for every user re-
quirement results in needless LLM-Human interactions on unambiguous requirements, which
places an additional burden on users and hurts the code generation performance when producing
o�-topic questions. While ClarifyGPT can e�ectively identify ambiguous requirements without
any supervised training by conducting the code consistency check. The inconsistent code snippets
are taken as input to help ClarifyGPT formulate targeted questions that guide users in clarifying
ambiguity.

Besides, we observe that the performance of ClarifyGPT (Human Feedback) is slightly higher
than that of ClarifyGPT (Simulated Feedback). This suggests that our user simulation method
may generate user responses that do not ful�ll the users’ intentions. However, both methods can
signi�cantly improve the performance of code generation and achieve consistent gains across
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Table 5. Experimental results of ClarifyGPT with di�erent number of demonstrations. Numbers in red

denote the relative improvement of ClarifyGPT compared to the Default.

Methods HumanEval HumanEval-ET MBPP-sanitized MBPP-ET CoderEval Average

ChatGPT

Default 64.63 57.32 65.57 46.68 37.42 54.32

ClarifyGPT (zero-shot) 65.85 1.9% ↑ 58.13 1.4% ↑ 67.07 2.3% ↑ 48.01 2.8% ↑ 39.26 4.9% ↑ 55.66 2.7% ↑

ClarifyGPT (one-shot) 72.80 12.6% ↑ 60.98 6.4% ↑ 70.96 8.2% ↑ 51.52 10.4% ↑ 40.70 8.8% ↑ 59.39 9.3% ↑

ClarifyGPT (two-shot) 73.92 14.4% ↑ 63.21 10.3% ↑ 72.60 10.7% ↑ 53.63 14.9% ↑ 42.13 12.6% ↑ 61.10 12.6% ↑

ClarifyGPT (three-shot) 74.39 15.1% ↑ 64.84 13.1% ↑ 74.08 13.0% ↑ 55.58 19.1% ↑ 42.94 14.8% ↑ 62.37 15.0% ↑

GPT-4

Default 78.86 70.73 70.96 51.52 40.08 62.43

ClarifyGPT (zero-shot) 79.26 0.5% ↑ 70.73 0.0% - 72.13 1.6% ↑ 52.22 1.4% ↑ 41.10 2.5% ↑ 63.09 1.2% ↑

ClarifyGPT (one-shot) 83.93 6.4% ↑ 72.76 2.9% ↑ 75.88 6.9% ↑ 55.97 8.6% ↑ 41.92 4.6% ↑ 66.09 5.9% ↑

ClarifyGPT (two-shot) 85.15 8.0% ↑ 75.61 6.9% ↑ 77.75 9.6% ↑ 56.67 10.0% ↑ 43.56 8.7% ↑ 67.75 8.6% ↑

ClarifyGPT (three-shot) 87.80 11.3% ↑ 78.05 10.3% ↑ 78.69 10.9% ↑ 58.4713.5% ↑ 44.99 12.3% ↑ 69.60 11.7% ↑

di�erent LLMs and benchmarks, demonstrating the reliability of our simulation method’s evaluation
results.

Answering RQ2: ClarifyGPT (Simulated Feedback) improves the average performance
(Pass@1) of GPT-4 across �ve benchmarks from 62.43% to 69.60%, improves the average perfor-
mance of ChatGPT across �ve benchmarks from 54.32% to 62.37%. Their relative improvements
are 11.66% and 15.00% respectively, and the average improvement is 13.33%.

5.3 RQ3: Performance for Di�erent Number of Demonstrations

Setup. In this RQ, we investigate whether the increase or decrease in the number of demonstrations
will a�ect the performance of ClarifyGPT on the code generation task. Speci�cally, due to the
limitation of the input length of LLMs, we vary the number of demonstrations in the prompt from
zero to three. Then, we apply the two LLMs to ClarifyGPT and its variants, and assess their
performance of �ve benchmarks. We run these methods three times and report the average Pass@1
results as the �nal reports.
Results. Table 5 presents a comparison of the performance between ClarifyGPT and its variants.
Overall, ClarifyGPT demonstrates robustness to the number of demonstrations in the prompts.
When varying the number of demonstrations from zero to three, ClarifyGPT consistently outper-
forms the Default baseline across two LLMs and �ve benchmarks.

We can observe that, as expected, the performance of ClarifyGPT increases with the number of
demonstrations. In particular, as the number of demonstrations in the prompt is incremented from
zero to three, concerning ChatGPT, ClarifyGPT achieves an average performance increase from
55.66% to 62.37% across �ve benchmarks. For the GPT-4 model, ClarifyGPT’s average performance
increases from 63.09% to 69.60%. This is mainly because more demonstrations can provide a variety
of situations and information to LLMs, enabling them to better comprehend the context of the
problem and the required solution. Furthermore, LLMs can learn to generalize better through
demonstrations, that is, to infer a solution to a new situation from a known demonstration. This
allows LLMs to better adapt to di�erent inputs and requirements.
We also �nd that ClarifyGPT’s performance in the zero-shot setting exhibits a marginal im-

provement over the Default baseline, while its performance in the one-shot setting is signi�cantly
enhanced compared to that of the Default baseline. We attribute this di�erence to the fact that
in the zero-shot setting, ClarifyGPT is expected to generate meaningful responses without any
demonstrations, which can be particularly challenging for complex tasks (e.g., requiring LLMs to
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generate targeted clarifying questions). What’s more, zero-shot prompting relies solely on LLMs’
pre-trained knowledge and the wording of the given prompts, which may not o�er su�cient guid-
ance or constraints for LLMs to produce accurate or contextually relevant responses. In contrast,
the performance of ClarifyGPT with the one-shot setting is signi�cantly higher than that in the
zero-shot setting and is close to the performance of ClarifyGPT with the three-shot setting. This
indicates that ClarifyGPT has strong generalization performance when only one demonstration
is provided. We believe that in practical usage scenarios, utilizing ClarifyGPT in the one-shot
setting can serve as a trade-o� between e�ectiveness and e�ciency.

Answering RQ3: Overall, ClarifyGPT demonstrates robustness to the number of demon-
strations in the prompts. When varying the number of demonstrations from zero to three,
ClarifyGPT consistently outperforms the Default baseline across two LLMs and �ve bench-
marks.

6 HUMAN EVALUATION

In this section, we perform a human evaluation to further explore the reasons contributing to the
enhancement of ClarifyGPT’s performance.

6.1 �estions

We aims to address the following three questions:
(1) How e�ective is ClarifyGPT in detecting ambiguous requirements? ClarifyGPT

distinguishes between ambiguous and unambiguous requirements, generating clarifying questions
for the identi�ed ambiguous ones. If ClarifyGPT fails to focus solely on questioning the ambiguous
requirements, it may result in unnecessary interactions with users regarding unambiguous require-
ments, ultimately reducing e�ciency and compromising the user experience. Therefore, to tackle
this question, we invite ten participants to annotate the benchmark data as either ambiguous or
unambiguous. Subsequently, we utilize these annotations as ground truth to assess the e�ectiveness
of ClarifyGPT in detecting ambiguous requirements.
(2) How e�ective is ClarifyGPT in generating high-quality clarifying questions? The

quality of clarifying questions also in�uences the e�ciency and performance of code generation.
High-quality clarifying questions can help users in expressing their intents clearly. Thus, in this
question, we also invite the participants to assess whether the generated clarifying questions are
high-quality from three aspects: relevance, comprehensiveness, and usefulness.

(3) How e�ective is ClarifyGPT in generating accurate code solutions for both ambigu-

ous and unambiguous requirements? In Section 5, the experimental results demonstrate that
ClarifyGPT can signi�cantly enhance code generation performance. In this question, we aim to
delve deeper into ClarifyGPT’s e�ectiveness in generating accurate code solutions for ambiguous
requirements and unambiguous requirements, respectively.

6.2 Performance in Detecting Ambiguous Requirements

Setup. Given the subjective nature of determining whether a requirement is ambiguous or unam-
biguous, and the labor-intensive process of manual annotation, we have limited our annotation
e�orts to the MBPP-sanitized benchmark, which consists of 427 problems. Speci�cally, we invite
the ten participants involved in RQ1 to annotate the data. To ensure labeling accuracy, we employed
a two-round annotation process: Initially, each participant independently assessed the category
(ambiguous or unambiguous) of every problem within MBPP-sanitized. Subsequently, any con�icts
in annotation were resolved through majority voting among the participants. The agreement
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between the ten participants reached a Cohen’s Kappa score of 0.86 The �nal annotation results
are shown in Table 6.

Table 6. The results of manual annotation for MBPP-sanitized, alongside ClarifyGPT’s performance in

detecting ambiguous requirements, measured in terms of Precision, Recall, and F1-score metrics.

Methods MBPP-sanitized

Manual Annotations
Ambiguous Unambiguous Total

141 286 427
Precision Recall F1-score

ClarifyGPT (ChatGPT) 72.35 87.23 79.10
ClarifyGPT (GPT-4) 88.57 87.94 88.25

Results. Table 6 demonstrates the performance of ClarifyGPT in detecting ambiguous require-
ments on MBPP-sanitized benchmark. Overall, ClarifyGPT demonstrates commendable e�ective-
ness in this task. We can see that, for the ChatGPT model, ClarifyGPT achieves a precision of
72.35%, a recall of 87.23%, and an f1-score of 79.10%. Similarly, for the GPT-4 model, ClarifyGPT
demonstrates precision, recall, and f1-score metrics of 88.57%, 87.94%, and 88.25%, respectively. We
also note that ClarifyGPT performs better when using the GPT-4 model compared to when using
the ChatGPT model. This observation is consistent with the results presented in Table 4, where
ClarifyGPT (GPT-4) achieves a higher pass@1 metric than ClarifyGPT (ChatGPT).

6.3 Performance in Generating Clarifying�estions

Setup. In subsection 5.1 (RQ1), we gathered 140 identi�ed ambiguous problems along with their
corresponding clarifying questions. We recruited ten participants, assigned 42 problems to each
participant, and asked them to answer the clarifying questions. After that, participants were
prompted to evaluate whether they think the generated clarifying question are helpful. Speci�cally,
we consider three metrics: (1) Relevance, determining the extent to which the generated clarifying
questions are pertinent to the ambiguities; (2) Comprehensiveness, evaluating the adequacy of
the generated clarifying questions in addressing all ambiguities; and (3) Usefulness, measuring the
e�ectiveness of the generated clarifying questions in resolving ambiguities and clarifying intentions.
Participants are tasked with rating the accuracy of detected ambiguous problems and assessing the
relevance and comprehensiveness of the generated clarifying questions. Ratings for each metric
ranged from 0 to 2, with 2 indicating a positive assessment, 1 indicating a neutral stance, and 0
indicating a negative assessment.

Table 7. The results of human evaluation. Numbers in parentheses denote the standard deviations.

Metrics P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Relevance 1.83 (0.38) 1.90 (0.30) 1.74 (0.56) 1.86 (0.42) 1.88 (0.45) 1.79 (0.56) 1.93 (0.34) 1.76 (0.62) 1.81 (0.55) 1.95 (0.22)

Comprehensiveness 1.76 (0.53) 1.79 (0.52) 1.71 (0.64) 1.74 (0.59) 1.84 (0.47) 1.76 (0.58) 1.62 (0.76) 1.64 (0.66) 1.76 (0.53) 1.83 (0.49)

Usefulness 1.81 (0.45) 1.83 (0.49) 1.76 (0.62) 1.81 (0.50) 1.86 (0.47) 1.79 (0.56) 1.71 (0.64) 1.71 (0.60) 1.79 (0.56) 1.88 (0.40)

Results. The results of the human evaluation are shown in Table 7. The numbers in parentheses
denote the standard deviations. Overall, the ten participants expressed positive evaluations regard-
ing the quality of the generated clari�cation questions across all three assessment metrics. The
average scores for relevance, comprehensiveness, and usefulness are 1.85, 1.75, and 1.80, respectively.
Moreover, the standard deviations of all metrics are relatively small, indicating that their scores are
about the same degree of concentration.
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6.4 Performance in Generating Code for Ambiguous and Unambiguous Requirements

Setup. Drawing from the results of manual annotation for ambiguous and unambiguous require-
ments (illustrated in Table 6), we partition MBPP-sanitized and MBPP-ET 3 into “Ambiguous” and
“Unambiguous” subsets. We then leverage the human feedback collected from RQ1 to calculateClar-
ifyGPT’s performance, and compare the performance of ClarifyGPT receiving human feedback
with that of the Default on both subsets of benchmarks.

Fig. 3. The Pass@1(%) of ClarifyGPT receiving human feedback and Default on MBPP-sanitized and MBPP-

ET benchmarks.

Results. The comparison results are presented in Figure 3. We observe that ClarifyGPT enhances
code generation performance, particularly evident in the “Ambiguous" subsets of both benchmarks.
Compared to the Default, ClarifyGPT achieves an increase of 13.87% on MBPP-sanitized and
16.83% on MBPP-ET. Notably, for the “Ambiguous” subset, ClarifyGPT outperforms the Default
signi�cantly, showcasing enhancements of 83.36% on MBPP-sanitized and 91.88% on MBPP-ET. For
the “Unambiguous” subset, ClarifyGPT also demonstrates slight improvements. We attribute these
improvements to ClarifyGPT’s capability to e�ectively identify ambiguous requirements and
generate high-quality clarifying questions to assist users in resolving ambiguities. Consequently,
ClarifyGPT demonstrates signi�cant enhancements over the Default approach, particularly within
the "Ambiguous" subsets of benchmarks.

7 DISCUSSION

7.1 Benefits and Limitations

In this section, we discuss some potential bene�ts and limitations of our ClarifyGPT.
Bene�ts. (1) In contrast to prevailing LLM-based code generation methods [8, 23, 27] that

leverage post-processing techniques to sample a substantial pool of candidate codes and then select
one, ClarifyGPT aims to directly clarify the input requirements by asking clarifying questions.
Hence, our framework contributes to the augmentation of interpretability in the code generated by
LLMs. By clarifying speci�c details within the requirements or adding supplementary knowledge
to them, users can readily discern corresponding alterations in the resulting code. This contributes
to providing users with guidance on how to formulate requirements to improve code generation,

3As MBPP-ET shares identical requirements with MBPP-sanitized, their distributions of ambiguous and unambiguous
requirements are also identical.
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thereby facilitating a clearer understanding of the generated code. (2) Our ClarifyGPT improves
the interactive skills of LLMs by empowering them with the ability to automatically ask clarifying
questions for ambiguous requirements. In this way, it serves to facilitate users in identifying ambi-
guities within requirements and provides guidance in clarifying their intentions without requiring
users to initially generate code and subsequently read and analyze code to re�ne requirements.
Thus, ClarifyGPT enhances the user experience and production e�ciency.

Limitations. (1) Ideally, our framework is applicable to all LLMs. However, ClarifyGPT neces-
sitates that the LLMs possess a certain level of communicative competence, that is, the ability to
comprehend human instructions and formulate clarifying questions. Thus, the LLMs applicable
to our framework are limited, i.e., the LLMs without instruction tuning (e.g., InCoder [14] and
CodeGen [33]) are not suitable as the base models applied to ClarifyGPT framework. (2) Due to the
use of code consistency check to determine whether a requirement needs clari�cation, ClarifyGPT
is required to generate test inputs for the requirement and compare the test outputs of the sampled
solutions. Therefore, ClarifyGPT is not suitable for generating code with complex input (e.g.,
image or �le). In addition, for some code that does not return output values (e.g., deep learning
programs), using ClarifyGPT may also be subject to some limitations. (3) Utilizing ClarifyGPT

can introduce additional overhead, primarily due to the code consistency check component, which
entails sampling a speci�c quantity of programs (in this paper, we sample 25 programs for each
problem). We conducted a comparative analysis of ClarifyGPT against baseline approaches in
terms of cost per 100 problems. Speci�cally, upon utilizing the ChatGPT API, the average expenses
incurred per 100 problems encountered were as follows: Default incurred an average cost of $0.017,
CoT incurred an average cost of $0.058, GPT-Engineer incurred an average cost of $0.223, and
ClarifyGPT incurred an average cost of $0.421. Note that ClarifyGPT o�ers performance im-
provements of approximately 10% over GPT-Engineer, at a cost less than twice that of GPT-Engineer.
Furthermore, with advancements in LLM technology and decreasing costs for invoking LLM APIs,
the cost disparity of ClarifyGPT is expected to diminish over time.

7.2 Threats to Validity

The �rst threat to validity is the potential for data leakage. Since these LLMs are trained on open-
source code repositories, it is possible that some public benchmarks were included in their training
data. This could bias our assessment of the proposed approach, as some model outputs may be
in�uenced by prior exposure to these benchmarks. To mitigate this threat, we carefully select
HumanEval [9], MBPP-sanitized [5], and their respective extended versions for our evaluation.
HumanEval is a manually crafted problem-solving dataset, introduced by OpenAI for assessing
Codex’s performance. MBPP-sanitized, on the other hand, is a hand-veri�ed subset of the MBPP
dataset, comprising 427 Python problems that have undergone crowd-sourced veri�cation. These
datasets have undergone meticulous manual review and have been widely employed in previous
research studies [8, 23, 46].
The second threat to validity is the user simulation for evaluation. Due to the involvement

of human participants, evaluating ClarifyGPT, an interactive code generation framework, is
very expensive and hard to reproduce. Thus, we propose a user simulation method to facilitate
automated evaluations of ClarifyGPT across various LLMs and benchmarks. However, low-�delity
simulations can result in ClarifyGPT receiving feedback that is challenging to encounter in actual
practice, thereby yielding misleading outcomes and impacting our evaluation of ClarifyGPT’s
performance. To mitigate this threat, we design a special prompt to provide LLMs with clarifying
questions and ground-truth test cases. By endowing LLMs with this prior knowledge, ClarifyGPT
facilitates LLMs’ understanding of user intent and enables the generation of high-�delity simulated
user feedback. The results show that the performance of ClarifyGPT (Simulated Feedback) is very
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close to that of ClarifyGPT (Human Feedback), proving that our proposed simulation method can
serve as a good proxy for the automatic evaluation of ClarifyGPT, eliminating the necessity for
direct user participation.
The third threat pertains to the generalizability of our experimental results. To mitigate this

threat, on one hand, we have taken care to select two representative chat LLMs (ChatGPT and
GPT-4) as our base models and �ve widely-used datasets as the evaluation subjects. We apply the
two LLMs to our ClarifyGPT and assess their performance on these �ve datasets. On the other
hand, considering the inherent sensitivity of LLMs to prompts, we run baselines and ClarifyGPT

three times and report the average results as the �nal results. Despite the e�orts described, doubts
remain about whether ClarifyGPT can generalize beyond the experimental datasets, as these
datasets may have been part of the training sets for LLMs. We recommend that developers conduct
performance tests before integrating ClarifyGPT into their projects. In future work, we will delve
deeper into ClarifyGPT’s performance in real-world development scenarios.

8 CONCLUSION

In this paper, motivated by the observation that human developers typically ask clarifying questions
when they are faced with ambiguous requirements, we argue that empowering LLMs with the
ability to automatically clarify ambiguous requirements can improve code generation. To this end,
we propose ClarifyGPT, a code generation framework that enables LLMs to identify ambiguous
requirements and generate targeted clarifying questions. Speci�cally, ClarifyGPT consists of four
main stages, i.e., test input generation, code consistency check, reasoning-based question generation,
and enhanced code generation. For a given requirement, ClarifyGPT �rst generates high-quality
test inputs by using prompting techniques and heuristic mutations. Then, it utilizes the generated
test inputs to conduct a consistency evaluation and identify the ambiguous requirements. Next,
ClarifyGPT formulates targeted clarifying questions for the identi�ed ambiguous requirements
by prompting LLMs to engage in intermediate reasoning. Finally, it incorporates the clarifying
questions and their feedback to re�ne the original requirement and generate the �nal code solution
based on the re�ned prompt. In the evaluation part, we �rst apply GPT-4 to ClarifyGPT and recruit
ten participants to evaluate its performance on two public benchmarks. The human evaluation
results show that ClarifyGPT achieves a relative improvement of up to 16.83% in Pass@1 compared
to the Default baseline. Additionally, to automate the evaluation of ClarifyGPT, we introduce a
high-�delity simulation method to simulate user feedback. We conduct comprehensive experiments
on �ve benchmarks (i.e., HumanEval, HumanEval-ET, MBPP-sanitized, MBPP-ET, and CoderEval)
using two LLMs (i.e., GPT-4 and ChatGPT). The extensive results illustrate that ClarifyGPT
improves the average performance of GPT-4 across �ve benchmarks from 62.43% to 69.60%, and
improves the average performance of ChatGPT across �ve benchmarks from 54.32% to 62.37%. In
future work, we intend to integrate automatic prompt optimization techniques into the framework
to automatically generate and improve prompts for various tasks or datasets. Furthermore, we plan
to explore ClarifyGPT’s e�cacy in real-world development scenarios.
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