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ABSTRACT

In community-based software development, developers frequently

rely on live-chatting to discuss emergent bugs/errors they encounter

in daily development tasks. However, it remains a challenging task

to accurately record such knowledge due to the noisy nature of

interleaved dialogs in live chat data. In this paper, we first formulate

the task of identifying and synthesizing bug reports from commu-

nity live chats, and propose a novel approach, named BugListener,

to address the challenges. Specifically, BugListener automates three

sub-tasks: 1) Disentangle the dialogs from massive chat logs by

using a Feed-Forward neural network; 2) Identify the bug-report

dialogs from separated dialogs by leveraging the Graph neural net-

work to learn the contextual information; 3) Synthesize the bug

reports by utilizing Transfer Learning techniques to classify the

sentences into: observed behaviors (OB), expected behaviors (EB),

and steps to reproduce the bug (SR). BugListener is evaluated on

six open source projects. The results show that: for bug report

identification, BugListener achieves the average F1 of 77.74%, im-

proving the best baseline by 12.96%; and for bug report synthesis

task, BugListener could classify the OB, EB, and SR sentences with

the F1 of 84.62%, 71.46%, and 73.13%, improving the best baselines by

9.32%, 12.21%, 10.91%, respectively. A human evaluation study also

confirms the effectiveness of BugListener in generating relevant and

accurate bug reports. These demonstrate the significant potential of

applying BugListener in community-based software development,

for promoting bug discovery and quality improvement.
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1 INTRODUCTION

Collaborative communication via live chats allows developers to

seek information and technical support, share opinions and ideas,

discuss issues, and form community development [14, 16], in a

more efficient way compared with asynchronous communication

such as emails or forums [42, 65, 66]. Consequently, collaborative

live chatting has become an integral part of most software develop-

ment processes, not only for open source communities constituting

globally distributed developers, but also for software companies to

facilitate in-house team communication and coordination, esp. in

accommodating remote work due to the COVID-19 pandemic [49].

Existing literature reports that developers are likely to join col-

laborative live chats to discuss problems they encountered during

development [5, 6, 13, 52]. Shi et al. [62] analyzed 749 live-chat

dialogs from eight OSS communities, and found 32% of the dialogs

are reporting unexpected behaviors, such as something does not

work, reliability issues, performance issues, and errors. In fact, these

reporting problems usually imply potential bugs that have not been

found. Fig. 1 illustrates an example slice of collaborative live chats

[1] from the Docker community. In this conversation, developer

David reported a performance bug that Docker took a lot of disk

space, and Lena indeed confirmed David’s feedback. Then, Jack

provided a suggestion to help resolve this problem but failed in the

end. Although developers have revealed this bug via collaborative

live chats, the highly dynamic and multi-threading nature of live

chatting makes this bug-report conversation get quickly flooded by

new incoming messages. After several months, Docker developers

call to remembrance this bug with the frustrated comments such

as “lost all my system backups” and “it’s a shame”, when there

are several formal bug reports (i.e., #30254, #31105, and #32420)
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Fig. 1: An example of identifying and synthesizing a bug

report from the Docker collaborative live chats.

reflecting the similar problem that was submitted to the GitHub

bug repository. We can observe that, if the bug discussed in live

chats could be identified and documented in a timely manner, the

bug may have been resolved earlier by the Docker community. Con-

sequently, the Docker community may have the opportunity to

prevent many failure incidents associated with this bug [54].

Although the live chats could be a tremendous data source em-

bedded with bug reports over time, it is quite challenging to mine

massive chat messages due to the following barriers. (1) Entangled

and noisy data. Live chats typically contain entangled, informal

conversations covering a wide range of topics [44]. Moreover, there

exist noisy utterances such as duplicate and off-topic messages

in chat messages that do not provide any valuable information.

Such entangled and noisy nature of live chat data poses a diffi-

culty in analyzing and interpreting the communicative dialogues.

(2) Understanding complex dialog structure. In complex di-

alogs, developers usually either confirm or reject a bug report by

replying to previous utterances. Since the “reply-to” relationship is

not linear to the dialog structure, it is necessary to employ more

sophisticated techniques to handle nonlinear dialog structure, in

order to learn precise feedback and reduce the likelihood of intro-

ducing false-positive. For example, the utterance “When I use the

‘automationName’ key, I get an error that it is not a recognized

W3C capability.” is very likely to be classified as a bug proposal.

However, when examining the dialog, we found that the following-

up utterances pointed out the error was not a valid bug. Instead, it

was caused by the user’s action of importing incorrect packages.

(3) Extremely expensive annotation. The live chats are typically

large in size. It is extremely expensive to annotate bug reports from

chat messages due to the high volume corpus and a low propor-

tion of ground-truth data. Only a few labeled chat messages are

categorized into bug report types. Thus, the labeled resources for

synthesizing bug reports are also limited. How tomakemaximal use

of the limited labeled data to classify the unlabeled chat messages

accurately becomes a critical problem.

In this work, we propose a novel approach, named BugListener,

which can identify bug-report dialogs from massive chat logs and

synthesize complete bug reports from predicted bug-report dialogs.

BugListener employs a deep graph-based network to capture the

complex dialog structure, and a transfer-learning network to syn-

thesize bug reports. Specifically, BugListener addresses the chal-

lenges with three elaborated sub-tasks: 1) Disentangle the dialogs

from massive chat logs by using a Feed-Forward neural network.

2) Identify bug-report dialogs from separated dialogs by modeling

the original dialog to the graph-structured dialog and leveraging

the Graph neural network (GNN) to learn the complex context

representation. 3) Synthesize the bug reports from predicted bug-

report dialogs using Transfer Learning techniques. Specifically, we

use the pre-trained BERT model provided by Devlin et al. [21]

and fine-tune it twice using the external BEE dataset [68] and our

own dataset, respectively. To evaluate the proposed approach, we

collect and annotate 1,501 dialogs from six popular open-source

projects. The experimental results show that our approach signifi-

cantly outperforms all other baselines in both two tasks. For bug

report identification task, BugListener achieves an average F1 of

77.74%, improving the best baseline by 12.96%. For bug report syn-

thesis task, BugListener could classify sentences depicting observed

behavior (OB), expected behavior (EB), and steps to reproduce (SR)

with the F1 of 84.62%, 71.46%, and 73.13%, respectively, improving

the best baseline by 9.32%, 12.21%, and 10.91%, respectively. We also

conduct a human evaluation to assess the correctness and quality of

the generated bug reports, showing that BugListener can generate

relevant and accurate bug reports.

The main contributions and their significance are as follows.

• We propose an automated approach, named BugListener, based

on a deep graph-based network to effectively identify the bug-

report dialogs, and a transfer-learning network to extensively

synthesize bug reports. We believe that BugListener can facili-

tate community-based software development by promot-

ing bug discovery and quality improvement.

• We evaluate the BugListener by comparing with state-of-the-art

baselines, with superior performance.

• Data availability: publicly accessible dataset and source code

[2] to facilitate the replication of our study and its application in

other contexts.

In the remaining of this paper, Sec. 2 defines the problem. Sec. 3

elaborates the approach. Sec. 4 presents the experimental setup. Sec.

5 demonstrates the results and analysis. Sec. 6 describes the human

evaluation. Sec. 7 discusses indications and threats to validity. Sec.

8 introduces the related work. Sec. 9 concludes our work.

2 PROBLEM DEFINITION

To facilitate the problem definition and further discussion, we first

provide some basic concepts and notations used in this study:

• A chat log (L) corresponds to a sequence of utterances 𝑢𝑖 in
chronological order, denoted by 𝐿 = {𝑢1, 𝑢2, ..., 𝑢𝑛}.

• An utterance (𝑢𝑖 ) consists of the timestamp, developer role, and
textual message, denoted by 𝑢𝑖 =< 𝑡𝑖𝑚𝑒, 𝑟𝑜𝑙𝑒, 𝑡𝑒𝑥𝑡 >.
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• A developer role (𝑟𝑜𝑙𝑒) in a dialog is defined as either a reporter
or a discussant. A reporter refers to a developer launching a dialog,

while a discussant refers to a developer participating in the dialog.

Denoted by 𝑟𝑜𝑙𝑒 ∈ {𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑟, 𝑑𝑖𝑠𝑐𝑢𝑠𝑠𝑎𝑛𝑡}.
• A dialog (𝐷𝑖 ) is a sequence of 𝑘 utterances 𝑢𝑖 , retaining the

“reply-to” relationship among utterances, denoted by 𝐷𝑖 = {𝑢R1
1 ,

𝑢R2
2 , ..., 𝑢R𝑘

𝑘
}.

• A relational context for utterance𝑢𝑖 (R𝑖 ) is a set of undirected

"reply-to" relationship identifiers, each identifier corresponding

to a message replying to or replied by 𝑢𝑖 . If two utterances share
the same superscript, then it implies one replies to the other. For

example, 𝐷 = {𝑢𝑅1,𝑅21 , 𝑢𝑅12 , 𝑢𝑅23 } represents that both 𝑢2 and 𝑢3
reply to 𝑢1.

Our work then targets at automatically identifying and synthe-

sizing bug reports from community live chats. We formulate the

task of automatic bug report generation from live chats with three

elaborated sub-tasks:

(1) Dialog disentanglement: Given the historical chat log 𝐿, dis-
entangle it into separate dialogs {𝐷1, 𝐷2, ..., 𝐷𝑛}.

(2) Bug-Report dialog Identification (BRI): Given a separate dialog

𝐷𝑖 , find a binary function 𝑓 so that 𝑓 (𝐷𝑖 ) can determine whether

the dialog involves bug-reporting messages.

(3) Bug-Report Synthesis (BRS): Assuming that the content of

bug reports is made up of sentences extracted from the reporters’ ut-

terances, given all the reporter’s utterances𝑈𝑟 in the predicted bug-

report dialog𝐷𝑖 , find a function𝑔 so that𝑔(𝑈𝑟 ) = {𝐷𝐸𝑆,𝑂𝐵, 𝐸𝐵, 𝑆𝑅},
where 𝐷𝐸𝑆,𝑂𝐵, 𝐸𝐵, and 𝑆𝑅 represent the collections of sentences

in 𝑈𝑟 that depict Description, Observed Behavior, Expected Behavior,

and Step to Reproduce.

3 APPROACH

There are five main steps to construct BugListener, as shown in Fig.

2. These include:(1) dialog disentanglement and data augmentation

to prepare the data; (2) utterance embedding to convert utterances

into semantic vectors; (3) graph-based context embedding to con-

struct dialog graph and learn the contextual representation by em-

ploying a two-layer graph neural network; (4) dialog embedding

and classification to learn whether a dialog is a bug-report dialog;

and (5) bug report synthesis to form a complete bug report. Next,

we present details of each step.

3.1 Data Disentanglement and Augmentation

In this step, We first separate dialogs from the interleaved chat

logs using a Feed-Forward network. Then, we augment the original

dialog dataset utilizing a heuristic data augmentation method to

overcome the insufficient labeled resource challenge.

3.1.1 Dialog Disentanglement. Utterances from a single conver-

sation thread are usually interleaved with other ongoing conver-

sations, and therefore need to be divided into individual dialogs

accordingly. To find a reliable disentanglement model, we exper-

iment with four state-of-the-art dialog disentanglement models,

i.e., BILSTM model [29], BERT model [21], E2E model [44], and

FF model, using our manual disentanglement dataset as detailed

in Section 4.1 later. The comparison results from our experiments

show that the FF model significantly outperforms the others on

disentangling developer live chat by achieving the highest scores

on NMI, Shen-F, F1, and ARI metrics. The average scores of these

four metrics are 0.74, 0.81, 0.47, and 0.57 respectively1.

Specifically, the FF model is a Feed-Forward neural network

with 2 layers, 512-dimensional hidden vectors, and softsign non-

linearities. It employs a two-stage strategy to resolve dialog disen-

tanglement. First, the FF model predicts the “reply-to” relationship

between every two utterances in the chat log based on averaged

pre-trained word embedding and many hand-engineered features.

Second, it clusters the utterances that can reach each other via the

“reply-to” predictions as one dialog. Thus, the FF-model can output

not only the utterances in one dialog but also their “reply-to” rela-

tionship, which is essential for constructing the internal network

structure of dialogs.

3.1.2 Data Augmentation. To address the limited annotation and

data imbalance issue, a heuristic data augmentation mechanism is

employed to enlarge the dataset through dialog mutation. The key

to dialog mutation is to alter the utterance forms and retain their

semantics. To achieve that, we mutate a long utterance by replacing

a few words with their synonyms, or mutate a short utterance

by replacing it with another short utterance. Specifically, given

a dialog 𝐷 = {𝑢1, 𝑢2, ..., 𝑢𝑛}, we generate 𝑁 different mutants by

iterating the following steps 𝑁 times. For each utterance 𝑢𝑖 in a
dialog 𝐷 , we perform either an utterance-level replacement or a

word-level replacement based on its length, and generate a new

utterance 𝑢𝑖
′ = Γ(𝑢𝑖 ):

∀𝑢𝑖 ∈ 𝐷, Γ(𝑢𝑖 ) =

{
𝑢𝑘 |𝑢𝑖 | ≤ 𝜃

SR(𝑢𝑖 ) |𝑢𝑖 | > 𝜃
(1)

where |𝑢𝑖 | denotes the length of 𝑢𝑖 , and 𝜃 is a predefined threshold

(We empirically set 𝜃 = 5 in this study). 𝑢𝑘 is the utterance that is
randomly selected from the entire dialog corpus with a length less

than 𝜃 . SR(𝑢𝑖 ) denotes the synonym-replacement operation that
has been widely used by NLP text augmentation task [76]. After all

utterances in dialog 𝐷 are processed, we then obtain a new dialog

𝐷𝑎𝑢𝑔 = {𝑢1
′, 𝑢2

′, ..., 𝑢𝑛
′}.

To achieve data balancing, for each project, we first augment the

NBR dialogs to a certain number, then we augment BR dialogs to

match the same number. Taking the Angular project as an example,

we first augment the NBR dialogs from 179 to 358 (2 times), then

augment the BR dialogs from 86 to 358 for balancing purposes.

3.2 Utterance Embedding

The utterance embedding aims to encode semantic information of

words, as well as to learn the representation of utterances.

Word encoding. We encode each word in utterances into a

semantic vector by utilizing the deep pre-trained BERT model [21],

which has achieved impressive success in many natural language

processing tasks [47, 72]. The last layer of the BERT model outputs

a 768-dimensional contextualized word embedding for each word.

Utterance encoding.With all theword vectors, we use TextCNN

[77] to learn the utterance representation. TextCNN is a classical

method for sentence encoding by using a shallow Convolution

Neural Network (CNN) [38] to learn sentence representation. It

has an advantage over learning on insufficient labeled data, since

1Due to space, experimental details on evaluation existing disentanglement models
are provided on our website [2].
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Fig. 2: Overview of BugListener.

it employs a concise network structure and a small number of pa-

rameters. We use four different size convolution kernels with 100

feature maps in each kernel. The convoluted features are fed to a

Max-Pooling layer followed by the ReLU activation [50]. Then, we

concatenate these features and input them into a 100-dimensional

full-connected layer to obtain the 100-dimensional utterance em-

bedding �𝑢𝑖 . After encoding all the utterances of a dialog 𝐷 , we can
get utterance-embedded dialog 𝐷 ′ = { �𝑢1, �𝑢2, .., �𝑢𝑛}.

3.3 Graph-based Context Embedding

This step aims to capture the graphical context of utterances in one

dialog. Given the utterance-embedded dialog 𝐷 ′ = { �𝑢1, �𝑢2, .., �𝑢𝑛}
with the set of “reply-to” relationship R, we first construct a dialog

graph 𝐺 (𝐷 ′). Then, we learn the contextual information of 𝐺 (𝐷 ′)

via a two-layer graph neural network, and output 𝐺𝑐 (𝐷
′) where

each vertex in 𝐺𝑐 (𝐷
′) restores the contextual information of the

corresponding vertex in𝐺 (𝐷 ′). Finally, We concatenate each vertex

in 𝐺 (𝐷 ′) with its corresponding vertex in 𝐺𝑐 (𝐷
′), and output the

sequence of combination as the dialog vector 𝐶 = { �𝑐1, �𝑐2, ..., �𝑐𝑛}.

3.3.1 Construct Dialog Graph. Given the utterance-embedded di-

alog 𝐷 ′ consisting of 𝑁 utterances and the set of “reply-to” rela-

tionship R, we construct a directed graph 𝐺 (𝐷 ′) = (V, E,W,T),

whereV is the vertex set, E is the edge set,W is the weight set of

edges, and T is the set of edge types. More specifically:

Vertex. Each utterance is represented as a vertex 𝑣𝑖 ∈ V . We use

the utterance embedding �𝑢𝑖 to initialize the corresponding vertex
𝑣𝑖 . The 𝑣𝑖 will be updated during the graph learning process.

Edge. We construct the edge set E based on the “reply-to” re-

lationship. The edge 𝑒𝑖 𝑗 ∈ E denotes that there is a “reply-to”

relationship between 𝑢𝑖 and 𝑢 𝑗 .

Edge Weight. The edge weight 𝑤𝑖 𝑗 is the weight of the edge

𝑒𝑖 𝑗 , with 0 ≤ 𝑤𝑖 𝑗 ≤ 1, where 𝑤𝑖 𝑗 ∈ W and 𝑖, 𝑗 ∈ [1, 2, ..., 𝑁 ].

𝑤𝑖 𝑗 is determined by the similarity of �𝑢𝑖 and �𝑢 𝑗 . Specifically, we

employ pair-wise dot product to compute the similarity score of

pair vertices. Then, we normalize the similarity score and calculate

the edge weight𝑤𝑖 𝑗 :

𝑤𝑖 𝑗 =
�𝑢𝑖
T ·𝑊𝑒 �𝑢 𝑗∑

𝑘∈𝑁 (𝑖,∗)

�𝑢𝑖
T ·𝑊𝑒 �𝑢𝑘

(2)

where𝑊𝑒 is a trainable matrix used to perform linear feature trans-

formation on vertex, 𝑁 (𝑖,∗) denotes the set of vertices that vertex

𝑣𝑖 points to.
Edge Type.We define the type of the edge 𝑒𝑖 𝑗 as 𝑡𝑖 𝑗 ∈ T , accord-

ing to the developer-role dependency of 𝑒𝑖 𝑗 . Specifically, we consider
four types of edges in this study, i.e., 𝑟 → 𝑟, 𝑟 → 𝑑, 𝑑 → 𝑟 , and
𝑑 → 𝑑 , where 𝑟 denotes the reporter, 𝑑 denotes the discussant, as

we defined in the previous section.

3.3.2 Embed Dialog Graph Context. Given a dialog graph 𝐺 (𝐷 ′),

we employ a two-layer graph neural network (GNN) [59] to embed

the graph context of dialog structure and developer-role depen-

dency, respectively. We output 𝐺𝑐 (𝐷
′) where each vertex restores

graph context information.

Structure-level GNN. In the first layer, a basic GNN [31] is used

to learn the structure-level context for each vertex in a given graph,

including embedding its neighbor vertices via the “reply-to” edges,

as well as the features contained in the neighbor vertices.

A basic GNN layer can be implemented as follows:

𝑣𝑖
(𝑙+1) = 𝜎

(
𝑊

(𝑙)
1 𝑣𝑖

(𝑙) +𝑊
(𝑙)
2

∑
𝑗 ∈𝑁 (∗,𝑖 )

𝑣 𝑗
(𝑙)
)

(3)

where 𝑁 (∗,𝑖) denotes the set of neighboring vertices that point

to vertex 𝑣𝑖 . 𝑣𝑖
(𝑙) represents the updated vertex at layer 𝑙 , and

𝑣𝑖
(𝑙+1) represents the updated vertex at layer 𝑙 + 1. 𝜎 denotes a

non-linear function, such as sigmoid or ReLU,𝑊
(𝑙)
1 and𝑊

(𝑙)
2 are

trainable parameter matrices. We introduce the edge weights to

better aggregate the local information. Hence, the updated vertex

𝑣𝑖
(1) of the structure-level GNN layer is calculated as:

𝑣𝑖
(1) = 𝜎

(
𝑊

(1)
1 �𝑢𝑖 +𝑊

(1)
2

∑
𝑗 ∈𝑁 (∗,𝑖 )

𝑤 𝑗𝑖 �𝑢 𝑗

)
(4)

where𝑤 𝑗𝑖 denotes the edge weight from vertex 𝑣 𝑗 to vertex 𝑣𝑖 .
Role-level RGCN. In the second layer, we further capture the

high-level contextual information by leveraging Relational Graph

Convolutional Networks (RGCN) [60]. RGCN is a generalization

of Graph Convolutional Networks (GCN) [36] which extends the

hierarchical propagation rules and takes the edge types between
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vertices into account. Since RGCN explicitly models the neighbor-

hood structures, it can better handle multi-relational graph data

like our dialog graph, which contains four edge types. The vertex 𝑣𝑖
is updated by applying the RGCN over the output of the first layer.

𝑣𝑖 = 𝜎

(
𝑊

(2)
1 𝑣𝑖

(1) +
∑
𝑡 ∈𝑇

∑
𝑗 ∈𝑁 𝑡

(∗,𝑖 )

1

𝑐𝑖,𝑡
𝑊

(2)
𝑡 𝑣 𝑗

(1)

)
(5)

where 𝑁 𝑡
(∗,𝑖)

denotes the set of vertices that point to vertex 𝑣𝑖 under

edge type 𝑡 ∈ T . 𝑐𝑖,𝑡 is a normalization constant that can either be
learned or set in advance (such as 𝑐𝑖,𝑡 = |𝑁 𝑡

(∗,𝑖)
|). 𝜎 denotes a non-

linear function,𝑊
(𝑙)
2 and𝑊

(𝑙)
𝑡 are trainable parameter matrices,

the latter matrix changes under different edge types. The output

of role-level RGCN is the 𝐺𝑐 (𝐷
′) where each vertex 𝑣𝑖 restores the

embedded graph context �ℎ𝑖 for utterance 𝑢𝑖 .

3.3.3 Combined representation. To enrich the utterance represen-

tation, we concatenate each vertex in𝐺 (𝐷 ′) with its corresponding

vertex in 𝐺𝑐 (𝐷
′), and output the sequence of combination as the

dialog vector 𝐶 = { �𝑐1, �𝑐2, ..., �𝑐𝑛}, where �𝑐𝑖 = [ �𝑢𝑖 ⊕ �ℎ𝑖 ], and ⊕ is the

concatenation operator.

3.4 Dialog Embedding and Classification

This step aims to obtain the representation of an entire dialog and

classify it as either a positive or a negative bug-report dialog.

Dialog Embedding.We input the dialog vector𝐶 ={ �𝑐1, �𝑐2, ..., �𝑐𝑛}
to the Sum-Pooling and the Max-Pooling layer respectively. Then,

we concatenate the output vectors to get the dialog embedding �𝑔:

�𝑔 =
|𝑉 |∑
𝑖=1

�𝑐𝑖 ⊕ Maxpooling( �𝑐1, ..., �𝑐𝑛) (6)

where ⊕ is the concatenation operator, |𝑉 | is the number of the

graph’s vertices.

Dialog Classification. The label is predicted by feeding the

dialog embedding �𝑔 into two Full-Connected (FC) layers followed
by the Softmax function:

P = softmax(𝐹𝐶2 (ReLU(𝐹𝐶1 ( �𝑔𝑒 )))) (7)

whereP is the 2-length vector [𝑃 (NBR|𝐷), 𝑃 (BR|𝐷)], the 𝑃 (NBR|𝐷)

is the predicted probability of non-bug-report dialog, the 𝑃 (BR|𝐷)

is the predicted probability of bug-report dialog.

Finally, we minimize the loss through the Focal Loss [43] func-

tion. The Focal Loss improves the standard Cross-Entropy Loss by

adding a focusing parameter 𝛾 ≥ 0. It focuses on training on hard

examples, while down-weight the easy examples.

𝐹𝐿 = −
∑
𝑖

𝛼𝑖 (1 − P𝑖 )
𝛾𝑦𝑖 log(P𝑖 ) (8)

where 𝑦𝑖 is the 𝑖-th element of the one-hot ground-truth label (BR
or NBR), 𝛼𝑖 and 𝛾 are tunable parameters.

3.5 Bug Report Synthesis

Due to the high volume of live chat data and the low proportion of

ground-truth bug-report dialogs, it is difficult to get enough training

data for bug report synthesis task. To address this challenge, we

utilize a twice fine-tuned BERT model, which proves to be effective

to improve performance through more sophisticated transferring

knowledge from the pre-trained model [21]. Specifically, we use

a pre-trained BERT and fine-tune it twice using the external BEE

dataset and our BRS dataset, as shown in the dashed box of ‘3.5’ in

Fig. 2.

(1) Initial Fine-tuning BERT model. The BERT model is

a bidirectional transformer using a combination of Masked Lan-

guage Model and Next Sentence Prediction. It is trained from English

Wikipedia (2,500M words) and BooksCropus (800M words) [79].

The entire BERT model is a stack of 12 BERT layers with more than

100 million parameters.

Based on an assumption that the contents of bug reports are

likely from the reporters’ utterances, we perform the initial fine-

tune on the task of classifying bug-report contents into OB, EB, SR,

and Others. First, we select the external BEE dataset proposed by

Song et al. [68] that includes 5,067 bug reports, 11,776 OB sentences,

1,568 EB sentences, and 24,655 SR sentences as the source dataset.

Second, following the previous study [68], we preprocess sentences

in the 5,076 bug reports with lowercase, tokenization, excluding non-

English and overlong (over 200 words) ones. Third, we freeze the

first nine layers of the pre-trained BERT and update the parameters

of the last three layers via the sentences in the 5,076 bug reports. We

take the output of the first token (the [CLS] token) as the sentence

embedding. Finally, we input the sentence embedding into a FC

layer to produce the probabilities of OB (𝑃𝑏 ), EB (𝑃𝑒 ), SR (𝑃𝑠 ), and
Others (𝑃𝑜 ). We apply Cross-Entropy Loss when measuring the

difference between truth and prediction:

𝐿𝑜𝑠𝑠 = −(𝑦𝑏𝑙𝑜𝑔(𝑃𝑏 ) + 𝑦𝑒𝑙𝑜𝑔(𝑃𝑒 ) + 𝑦𝑠𝑙𝑜𝑔(𝑃𝑠 ) + 𝑦𝑜𝑙𝑜𝑔(𝑃𝑜 )) (9)

where 𝑦𝑏 , 𝑦𝑒 , 𝑦𝑠 , and 𝑦𝑜 indicate the ground-truth labels of sen-

tences.

(2) Twice fine-tuning BERT model. Given the above fine-

tuned BERT model, we perform the second round of fine-tuning

on our BRS dataset as follows. We first collect all the reporter’s

utterances 𝑈𝑟 in Dialog 𝐷 as our inputs. Since 𝑈𝑟 may contain

trivial contents that are less meaningful for reporting bugs, we

prune the𝑈𝑟 into𝑈 ′
𝑟 if they satisfy the following heuristic rules: (1)

remove the sentence 𝑠 if: (𝑙𝑒𝑛𝑔𝑡ℎ(𝑠) ≤ 5) AND (𝑠 does not contain
[URL], [EMAIL], [HTML], [CODE] or [VERSION]) (2) remove the

string 𝑠𝑡𝑟 from its sentence if: ∀𝑠𝑡𝑟 ∈ {“Hi”, “Hi All”, “hey there”, “Hi

everybody”, “hey guys”, “hi guys”, “guys”, “Hi there”, “thank you”,

“thanks”, “thanks anyway”, “thanks for replaying”, “ok, thanks”,

etc.}. Second, we transfer the BERT model previously fine-tuned on

the external bug report dataset for initialization, and replace the

original FC layer with a new one. Third, the BERT model is fine-

tuned the second time via labeled sentences in 𝑈 ′
𝑟 using a smaller

learning rate.

(3) Bug reports assembling. When generating bug reports,

we assemble sentences that are predicted to the same category in

chronological order. To fully retain the useful information in 𝑈 ′
𝑟 ,

we assemble all the sentences that belong to the “Others” category

as the description paragraph. In the end, we could generate a bug

report with its description, observed behavior, expected behavior,

and step to reproduce according to best practices for bug reporting

[8, 80].
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4 EXPERIMENTAL DESIGN

To evaluate the proposed BugListener approach, our evaluation

specifically addresses three research questions:

RQ1: How effective is BugListener in identifying bug-report

dialogs from live chat data?

RQ2: How effective is BugListener in synthesizing bug reports?

RQ3: How does each individual component in BugListener con-

tribute to the overall performance?

4.1 Data Preparation

4.1.1 Studied Communities. Many OSS communities utilize Gitter

[27] or Slack [28] as their live communication means. Considering

the popular, open, and free access nature, we select studied com-

munities from Gitter2. Following previous work [51, 63] , we select

popular and active communities as our studied subjects. Specifically,

we select the Top-1 most participated communities from six active

domains, covering front end framework, mobile, data science, De-

vOps, collaboration, and programming language. Then, we collect

the live chat utterances from these communities. Gitter provides

REST API [26] to get data about chatting rooms and post utterances.

In this study, we use the REST API to acquire the chat utterances

of the six selected communities, and the retrieved dataset contains

all utterances as of “2020-12-31”.

4.1.2 Preprocessing and Disentanglement. For data preprocessing,

we first convert all the words in utterances into lowercase, and

remove the stopwords. We also normalize the contractions in utter-

ances with contractions [37] library and use Spacy [4] for lemmati-

zation. Following previous work [10, 71], we replace the emojis with

specific strings to standard ASCII strings. Besides, we detect low

frequency tokens such as URL, email address, code, HTML tag, and

version number with regular expressions, and substitute them into

[URL], [EMAIL], [HTML], [CODE], and [VERSION] respectively.

Then, we use the FF model [39] to divide the processed data into

individual dialogs as introduced in Sec. 3.1.1. The detailed statistic

is shown in the “Entire Population” column of Table 1.

4.1.3 Sampling and Filtering. After dialog disentanglement, the

number of individual chat dialogs remains quite large. Limited by

the human resource of labeling, we randomly sample 100 dialogs

from each community. The sample population accounts for about

1.1% of the entire population. Although the ratio is not large, we

consider the selected dialogs are representative because they are

randomly selected from six diverse communities. The details of

sampling results are shown in the “Sample Population” column of

Table 1.

Since BugListener relies on natural language processing to un-

derstand the dialog, dialogs that have too much noise or do not

contain enough information are almost incomprehensible and thus

cannot decide a bug report. Following the data cleaning procedures

of previous studies [51, 63], we excluded noisy dialogs by apply-

ing the following exclusion criteria: 1) Dialogs that are written in

non-English languages; 2) Dialogs where the code or stack traces ac-

counts for more than 90% of the entire chat content; 3) Low-quality

dialogs such as dialogs with many typos and grammatical errors.

2In Slack, communities are controlled by the team administrators, whereas in Gitter,
access to the chat data is public

4) Dialogs that involve channel robots which main handle simple

greeting or general information messages.

4.1.4 Ground-truth Labeling. For each sampled dialog obtained in

the previous step, we label ground-truth data from three aspects: (1)

Correct disentanglement results. For each sampled dialog, we man-

ually correct the prediction of the “reply-to” relationships between

utterances, as well as the disentanglement results. (2) Label dialogs

with BR and NBR (See the “Sample Population” column in Table 1).

For each dialog that has been manually corrected, we manually la-

bel it with a “BR” or an “NBR” tag, according to whether it discusses

a certain bug that should be reported. (3) Label sentences with OB,

EB, and SR (See the “BRS Dataset” column in Table 1). For each

dialog labeled with BR, we first prune all reporter’s utterances 𝑈𝑟

to obtain𝑈 ′
𝑟 as described in Sec. 3.5(2). Then we label each sentence

in 𝑈 ′
𝑟 with observed behavior (OB), expected behavior (EB), and

step to reproduce (SR), according to their contents.

To ensure the labeling validity, we built an inspection team,

which consisted of four PhD students. All of them are fluent Eng-

lish speakers, and have done either intensive research work with

software development or have been actively contributing to open-

source projects. We divided them into two groups. The results from

both groups were cross-checked and reviewed. When a labeled

result received different opinions, we hosted a discussion with all

team members to decide through voting. Based on our observation,

the correctness of automated dialog disentanglement is 79%. The

average Cohen’s Kappa about bug report identification is 0.87, and

the average Cohen’s Kappa about bug report synthesis is 0.84.

4.1.5 Dataset augmentation and balancing. For BRI task, we aug-

ment the dataset as introduced in Sec. 3.1. For each project, we

first augment the NBR data eight times, and then augment the BR

data until BR and NBR data are balanced. The details are shown

in the “BRI Dataset” column in Table 1. For BRS task, we apply

EDA[76] techniques to augment OB, EB, SR sentences until their

numbers are balanced. We further incorporate an external dataset

for transfer learning. The external dataset is provided by Song et al.

[68], including 5,067 bug reports with 11,776 OB sentences, 1,568

EB sentences, and 24,655 SR sentences.

4.2 Baselines

The first two RQs require comparison with state-of-the-art base-

lines. We employ four common machine-learning-based baselines

applicable to both RQ1 and RQ2, including Naive Bayesian (NB)

[48], Random Forest (RF) [41], Gradient Boosting Decision

Tree (GBDT) [34], and FastText [33]. In addition, we employ sev-

eral baselines applicable to RQ1 and RQ2, respectively.

Additional Baselines for identifying bug-report dialogs (

RQ1). Furthermore, we also consider some existing approaches

that can identify sentences or mini-stories which are discussing

problems. CNC [32] is the state-of-the-art learning technique to

classify sentences in comments taken from online issue reports.

They proposed a CNN [38]-based approach to classify sentences

into seven categories of intentions: Feature Request, Solution Pro-

posal, Problem Discovery, etc. To achieve better performance of the

CNC baseline, we retrain the CNC model on our BRI dataset. We as-

semble all the utterances in a dialog as an entry, and predict whether
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Table 1: Our Experiment Dataset. (Part, Dial, Uttr, Sen are short for participating developers, dialog, utterance, and sentence,

respectively. BR and NBR denote bug-report and non-bug-report dialogs. 𝑈𝑟 denotes sentences in reporter’s utterances, and 𝑈 ′
𝑟

denotes the pruned 𝑈𝑟 .)

Sample Population BRI Dataset BRS Dataset
Entire Population

NBR BR Augmented NBR Augmented BR BR Dialog Reporter Sen. BR content

Project Part. Dial. Uttr Dial. Uttr. Dial. Uttr Dial. Uttr. Dial. Uttr Dial. Sen. Ur Ur’ OB EB SR DES

Angular 22,467 79,619 695,183 179 1,043 86 268 358 2,086 358 1,132 86 647 507 446 177 34 40 195

Appium 3,979 4,906 29,039 169 737 84 233 338 1,474 338 935 84 596 478 397 180 29 44 144

Docker 8,810 3,964 22,367 172 916 61 185 344 1,832 344 1,037 61 438 367 322 150 35 32 105

DL4J 8,310 27,256 252,846 178 1,070 79 373 356 2,140 356 1,781 79 828 590 502 184 32 56 230

Gitter 9,260 7,452 34,147 207 813 63 304 414 1,626 414 1,898 63 733 432 369 159 19 15 176

Typescript 8,318 18,812 196,513 203 1,016 20 85 406 2,032 406 1,625 20 176 138 118 48 12 8 50

Total 61,144 142,009 1,230,095 1,108 5,595 393 1,448 2,216 11,190 2,216 8,408 393 3418 2,512 2,154 898 161 195 900

Table 2: Baseline comparison across the six communities for bug-report dialog identification (%).

Angular Appium Docker DL4J Gitter Typescript Average
Methods

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

BugListener 82.93 79.07 80.95 69.39 80.95 74.73 77.42 78.69 78.05 85.07 72.15 78.08 82.09 87.30 84.62 70.00 70.00 70.00 77.82 78.03 77.74

NB 58.88 73.26 65.28 62.22 66.67 64.37 65.52 31.15 42.22 62.79 34.18 44.26 72.92 55.56 63.06 35.29 30.00 32.43 59.60 48.47 51.94

GBDT 72.22 60.47 65.82 65.17 69.05 67.05 66.00 54.10 59.46 85.00 64.56 73.38 59.77 82.54 69.33 35.14 65.00 45.61 63.88 65.95 63.44

RF 75.00 59.30 66.23 72.15 67.86 69.94 68.75 36.07 47.31 72.73 20.25 31.68 62.34 76.19 68.57 60.00 30.00 40.00 68.50 48.28 53.96

FastText 77.59 52.33 62.50 68.54 72.62 70.52 56.60 49.18 52.63 74.51 48.10 58.46 67.24 61.90 64.46 40.91 45.00 42.86 64.23 54.86 58.57

CNC 80.36 52.33 63.38 67.05 70.24 68.60 74.51 62.29 67.86 84.44 48.10 61.29 68.18 71.43 69.77 52.00 65.00 57.78 71.09 61.57 64.78

DECA 51.32 45.35 48.15 51.16 52.38 51.76 45.57 59.02 51.43 42.22 48.10 44.97 55.36 49.20 52.10 21.57 55.00 30.99 44.53 51.51 46.57

Casper 67.65 53.49 59.74 66.06 85.71 74.61 60.56 70.49 65.15 82.14 58.23 68.15 73.33 69.84 71.54 32.50 65.00 43.33 63.71 67.13 63.75

the entry belongs to problem discovery. DECA [69] is the state-of-

the-art rule-based technique for analyzing development emails. It

is used to classify the sentences of emails into problem discovery,

solution proposal, information giving, etc., by using linguistic rules.

We use the twenty-eight linguistic rules [61] for identifying the

“problem discovery” utterances in a dialog and regard the dialog

containing the “problem discovery” utterances as the bug-report

dialog. Casper [30] is a method for extracting and synthesizing

user-reported mini-stories regarding app problems from reviews.

Similar to the CNC baseline, we also retrain the Casper model on

the BRI dataset, and apply it to determine bug-report dialogs by

assembling all the utterances in a dialog as one entry.

Additional Baseline for synthesizing bug reports (RQ2).We

investigated seven state-of-the-art approaches for the bug report

synthesis task, including CUEZILLA [80], DeMlBUD [12], iTAPE

[17], S2RMiner [78], infoZilla [9], Euler [11] and BEE [68]. Among

the above approaches, only the replication packages from iTAPE,

S2RMiner, and BEE are available. Since iTAPE and S2RMiner clas-

sify SR sentences, and only BEE share the same target with us,

that is to classify OB, EB, SR, and Other sentences for bug reports.

Therefore, we choose BEE as our additional baselines for bug report

synthesis. BEE comprises three binary classification SVM, which

can tag sentences with OB, EB, or SR labels.

This leads to a total of seven baselines for RQ1, and five baselines

for RQ2.

4.3 Evaluation Metrics

We use three commonly-used metrics to evaluate the performance

of both two tasks, i.e., Precision, Recall, and F1. (1) Precision refers to

the ratio of the number of correct predictions to the total number

of predictions; (2) Recall refers to the ratio of the number of correct

predictions to the total number of samples in the golden test set;

and (3) F1 is the harmonic mean of precision and recall. When

comparing the performances, we care more about F1 since it is

balanced for evaluation.

4.4 Experiment Settings

The experimental environment is a desktop computer equipped

with an NVIDIA GeForce RTX 3060 GPU, intel core i5 CPU, 12GB

RAM, running on Ubuntu OS.

For RQ1, we apply Cross-Project Evaluation on our BRI dataset to

perform the training process. We iteratively select one project as a

test dataset, and the remaining five projects for training. We train

BugListener with 32 batch_size. We choose Adam as the optimizer

with learning_rate=1e-4. To avoid over-fitting, we set dropout=0.5,

and adopt the L2-regularization with 𝜆=1e-5. The 𝛼 and 𝛾 of Focal

Loss function are 0 and 2, respectively. When training GBDT, we

set the learning_rate=0.1 and the n_estimators=100; For RF, we set

the min_samples_leaf =10 and the n_estimators=100; We train 100

epochs for FastText, and set the learning_rate=0.1, the window

size of input n-gram as 2; Casper chooses SVM.SVC as the default

function, with rbf as the kernel, 3 as the degree, and 200 as the

cache_size; CNC selects 32 as the batch_size, 128-dimensional word

embedding, four different filter sizes of [2, 3, 4, 5] with 128 filters,
30 training epochs, and dropout=0.5. For these hyper-parameters,

we use greedy search [40] as the parameter selection method to

obtain the best performance.

For RQ2, in the first fine-tune round, we train BugListener on the

external BEE dataset (see Sec. 4.1.5) with 64 batch_size. We set the

warmup proportion of BERT model to 0.1, and the value of gradient

clip to 1.0. We choose Adam as the optimizer with learning_rate=1e-

4 and weight decay rate=0.01. We train BugListener for 13 epochs

and save the best model. In the second fine-tune round, we use

the same parameters while changing the batch_size from 64 to 8,

the epoch from 13 to 70, and the learning_rate from 1e-4 to 1e-6.

We apply a 10-fold partition on the BRS dataset to perform the

secondary fine-tuning, i.e., we use nine folds for fine-tuning, and
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the remaining one for testing. For NB/GDBT/RF/FastText baselines,

we use the greedy strategy to tune parameters to achieve the best

performance. For the additional baseline BEE, we directly utilize

its open API [67] to predict OB, EB, and SR sentences.

For RQ3, we compare BugListener with its two variants in bug re-

port identification task: 1) BugListener w/o CNN, which removes

the TextCNN. 2) BugListener w/o GNN, which removes the graph

neural network. BugListener with its two variants use the same pa-

rameters when training. We compare BugListener with its variant

without transferring knowledge from the external BEE dataset (i.e.,

BugListener w/o TL) in bug report synthesis task. BugListener

w/o TL has the same network structure with BugListener, but it

does not use the external BEE dataset and is only fine-tuned on our

BRS dataset.

5 RESULTS AND ANALYSIS

5.1 Performance in Identifying Bug Reports

Table 2 shows the comparison results between the performance

of BugListener and those of the seven baselines across data from

six OSS communities, for BRI tasks. The columns correspond to

Precision, Recall, and F1. The highlighted cells indicate the best

performance from each column. Then, we conduct the normality

test and T-test between every twomethods. Overall, the data follows

a normal distribution, and BugListener significantly (𝑝 − 𝑣𝑎𝑙𝑢𝑒 <
0.01) outperforms the seven baselines on F1. Specifically, when

comparing with the best Precision-performer among the seven

baselines, i.e., CNC, BugListener can improve its average precision

by 6.73%. Similarly, BugListener improves the best Recall-performer,

i.e., Casper, by 10.90% for average recall, and improves the best F1-

performer, i.e., CNC, by 12.96% for average F1. At the individual

project level, BugListener can achieve the best F1-score in all six

communities.

For BRI tasks, we believe that the performance advantage of

BugListener is mainly attributed to the rich representativeness of

its internal construction, from two perspectives: (1) BugListener

models the textual dialog as the dialog graph thereby can effec-

tively exploit the graph-structured knowledge. While the structure

information is missing in the baseline methods that treat a dialog

as a linear structure. (2) BugListener leverages a novel two-layer

GNN model with considering the edge types between utterances to

learn a high-level contextual representation. Thus it can capture

the latent semantic relations between utterances more accurately.

Answering RQ1: On average, BugListener has the best pre-

cision, recall, and F1, i.e., 77.82%, 78.03%, and 77.74%, improving

the best F1-baseline CNC by 12.96%. On individual projects, it also

outperforms the other baselines with achieving the best F1-score

in all six communities.

5.2 Performance in Synthesizing Bug Reports

Fig. 3 summarizes the comparison results between the average

performance of BugListener and the five baselines, for BRS task.

We can see that, BugListener can achieve the highest performance

in predicting OB, EB, and SR sentences. It outperforms the six

baselines in terms of F1. For predicting OB sentences, it reaches the

highest F1 (84.63%), improving the best baseline FastText by 9.32%.

For predicting EB sentences, it reaches the highest F1 (71.46%),
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Fig. 3: Baseline comparison for bug report synthesis.

improving the best baseline FastText by 12.21%. For predicting SR

sentences, it reaches the highest F1 (73.13%), improving the best

baseline FastText by 10.91%.

Our approach is more effective to classify OB, EB, and SR sen-

tences in live chats than others, mainly due to two reasons: (1) By

leveraging the transfer learning technique, BugListener can obtain

general knowledge from existing bug reports, thus would further

boost the classification performances on the limited resource. (2)

By employing the state-of-the-art BERT model which has a strong

ability to learn semantics via the transformer structure, BugListener

can capture richer semantic features in word and sentence vectors.

We notice that FastText achieve the second performances. These

results are mainly due to that, FastText can better understand the

context by capturing the neighbor words using a fixed-size window

when embedding words. we also notice that BEE performs the worst

on predicting EB (average F1 is only 7%). These results are mainly

due to that, BEE is trained from the external normal bug reports

dataset, and the expression style for EB sentences is quite different

between those in normal bug reports and those in live conversations.

The EB sentences in bug reports are likely expressed in a declarative

tone that state the reporter’s expectation as an objective fact, e.g., “I

wish docker can save disk usage”. While in live chats, EB sentences

are more likely expressed in an interrogative tone that the reporters

inquiry or ask for a reply, e.g., “Can docker avoid using such huge

disk?”. Therefore, it is difficult for BEE to predict EB sentences

correctly on live chat data.

Answering RQ2: BugListener outperforms the six baselines

in predicting OB, EB, and SR sentences in terms of F1. The three

categories’ average Precision, Recall, and F1 are 75.57%, 77.70%, and

76.40%, respectively.

5.3 Effects of Main Components

Fig. 4 (a) presents the performances of BugListener and its two vari-

ants for BRI task. We can see that, the F1 performance of BugLis-

tener is higher than all two variants across all the six communities.

When compared with BugListener and BugListener w/o GNN, re-

moving the GNN component will lead to a dramatic decrease of the

average F1 (by 17.22%) across all the communities. This indicates

that the GNN is an essential component to contribute to BugLis-

tener’s high performances. When compared with BugListener and

BugListener w/o CNN, removing the TextCNN component will

lead to the average F1 declines by 13.85%. It is mainly because the

TextCNN model can capture the intra-utterance semantic features,

which improves the classification performance.
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(a) The BRI performance

(b) The BRS performance

Fig. 4: The component analysis.

Fig. 4 (b) shows the performance of BugListener and its variant

without transferring knowledge from the external BEE dataset for

BRS task. We can see that, without the knowledge transferred

from the external BEE dataset, the F1 will averagely decrease by

2.52%, 6.06%, 3.13% for OB, EB, and SR prediction, respectively. This

indicates that incorporating the transferred external knowledge can

largely increase the performance on EB prediction, while slightly

increase the performance on OB and SR prediction.

Answering RQ3: The GNN, TextCNN, and Transfer Learning

technique adopted by BugListener are helpful for bug report identi-

fication and synthesis.

6 HUMAN EVALUATION

To further demonstrate the generalization and usefulness of our

approach, we apply BugListener on recent live chats from five new

communities: Webdriverio, Scala, Materialize, Webpack, and Pan-

das (note that these are different from our studied communities

so that all data of these communities do not appear in our train-

ing/testing data). Then we invite nine human annotators to assess

the correctness, quality, and usefulness of the bug reports generated

by BugListener.

Human Annotators. We recruit nine participants, including

two PhD students, two master students, three professional devel-

opers and two senior researchers, all familiar with the five open

source communities. They all have at least three years of software

development experience, and four of them have more than ten years

of development experience.

Procedure. First, we crawl the recent one-month (July 2021 to

August 2021) live chats of the five new communities from Gitter,

which contain 3,443 utterances. Second, we apply BugListener to

disentangle and construct the live chats into about 562 separated

dialogs. Among them, BugListener identifies 31 potential bug

reports in total3. For each participant, we assign 9-11 bug reports

3Limited by the space, we list the details about the 31 bug reports on our website [2].

of the communities that they are familiar with. Each bug report

is evaluated by three participants. For each bug report, each par-

ticipant has the following information available: (1) the associated

open source community; (2) the original textual dialogs from Gitter;

(3) the bug report generated by BugListener.

The survey contains three questions: (1) Correctness: Whether

the dialog is discussing a bug that should be reported at that mo-

ment (Yes or No)? (2) Quality: How would you rate the quality of

Description, Observed Behavior, Expected Behavior, and Step to

Reproduce in the bug report (using a five-level Likert scale [18])?

(3) Usefulness: How would you rate the usefulness of BugListener

(using a 5-level Likert scale)?

Results. To validate the correctness of bug reports identified

by BugListener, we ask each participant to determine whether it is

a real bug report and aggregate group decision based on the ma-

jority vote from the three participants. To validate the quality and

usefulness of each identified bug report, we ask each participant

to rate using a scheme from 1-10 and use the average score of the

three evaluations as the final score. Fig. 5(a) shows the bar and

pie chart depicting the correctness of BugListener. Among the 31

bug reports identified by BugListener, 24 (77%) of them are correct,

while 7 (23%) of them are incorrect. The correctness is in line with

our experiment results (80% precision of bug report identification).

The bar chart shows the correctness distributed among the five

communities. The correctness ranges from 63% to 100%. The per-

ceived correctness indicates that BugListener is likely generalized

to other open source communities with a relatively good and sta-

ble performance. Fig. 5(b) shows an asymmetric stacked bar chart

depicting the perceived quality and usefulness of BugListener’s

bug reports, in terms of description, observed behavior, expected

(a) Correctness

(b) Quality and usefulness

Fig. 5: Results of human evaluation
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behavior, and step to reproduce. We can see that, the high quality

of bug report description is highly admitted, 85% of the responses

agree that the bug report description is satisfactory (i.e., “somewhat

satisfied” or “satisfied”). The high quality of OB, EB, and S2R are

also moderately admitted (62%, 46%, and 58% on aggregated cases,

respectively). In addition, the usefulness bar chart shows that 71%

of participants agree that BugListener is useful. We will further

discuss where does BugListener perform unsatisfactorily in Sec.7.2.

7 DISCUSSION

Encouraged by the significant advantages of BugListener as shown

in Sec.6, we believe that our approach could facilitate the bug dis-

covering process and software quality improvement. In this section,

we propose potential usage scenarios as well as improvement op-

portunities for future work.

7.1 Potential Usage Scenario

Software Engineering Bots are widely known as convenient ways

for workflow streamlining and productivity improvement [3, 22, 35].

BugListener can be easily incorporated into a collaborative bot on

Gitter, following the basic implementation ideas: first, the OSS

repository owner or core team members who care about the po-

tential bugs could subscribe to their interesting chat rooms via

BugListener; then, BugListener will monitor the corresponding

chat rooms and send potential bug reports periodically; and finally,

for the bug reports that are confirmed by subscribers, BugListener

could automatically pull them to code repositories such as Github or

Gitlab that are well integrated with Gitter. We believe that BugLis-

tener could enhance individual and team productivity as well as

improving software quality.

7.2 Improvement Opportunities

As reported in Sec. 6, 7 out of 31 bug reports are incorrectly labeled

by BugListener. To identify further improvement opportunities

for follow-up studies, we summarized the following special cases

based on examining the human evaluation results that necessitates

further studies to improve the performance of BugListener.

(1) Dialogs with a few or no feedback.We found that 5 out of

the 7 incorrect cases are related to insufficient feedback, i.e., three

monologues, and the other two with less than five utterances in

total. When deciding whether a dialog contains a bug or not, the

feedback provided by other developers is important. For example,

feedback such as “it is still not working” and “could you please

file an issue” likely indicate the discussing bug should be reported.

Therefore, it is difficult for BugListener to predict dialogs with

insufficient feedback. In the future, follow-up research can enrich

the bug report classification by adding different confidence levels:

High and Normal. “High” refers to the bug reports that the reporter

or the discussants have confirmed, and “Normal” refers to the bug

reports that have the potential.

(2) Dialogs reflecting usermisuse/mistake.We observed that

2/7 incorrect bug reports are actually associated with installation

and version-update due to the users’ mistake or negligence. The

difference between “Bugs” and “user misuse/mistake” is subtle. Both

of them might contain negative complaints, error stack traces, and

similar keywords such as “I get errors”, “not addressed at all”, etc.

In the future, follow-up studies are needed to incorporate priori

knowledge (e.g., dialogs discussing installation, updating, or build-

ing issues are likely not reporting bugs.) to better distinguish the

two categories.

7.3 Threats to Validity

The first threat is generalizability. BugListener is only evaluated

on six open-source projects, which might not be representative of

closed-source projects or other open-source projects. The results

may be different if the model is applied to other projects. However,

our dataset comes from six different fields. The variety of projects

relatively reduce this threat.

The second threat may come from the results of automated dia-

log disentanglement. In this study, we manually inspect and correct

the disentanglement results to ensure high-quality inputs for evalu-

ating BugListener. The average correctness is 79% in our inspection.

However, for the fully automatic usage of BugListener, the trade-off

option would be directly adopting the automated disentanglement

results. Thus, in real-world application scenarios without manual

correction, a slight drop in performance might be observed. To

alleviate the threat, four state-of-the-art disentanglement models

are selected and experimented on live chat data. We adopt the best

performing model among the four models, the FF model, to disen-

tangle the live chat. The results of human evaluation study show

that BugListener can achieve 77% precision without manual correc-

tion, and the performance only slightly declined by 3% compared

with BugListener taking the corrected dialogue as input. Therefore,

we believe this can serve as a good foundation for BugListener’s

fully automatic usage.

The third threat relates to the construct of our approach. First,

we hypothesize that the contents of bug reports likely consist of

reporters’ utterances, which occasionally results in missing context

information. To alleviate the threat, we thoroughly analyzed where

our approach performs unsatisfactorily in Sec. 7.2, and planned

future work for improvement. Second, we enlarge our BRI dataset

by using a heuristic data augmentation, which may alter the se-

mantics of the original dialog. To alleviate the threat, we employ

the utterance mutation from two dimensions (utterance-level and

word-level), which has been commonly used in augmenting the

datasets for NLP tasks [23, 76]. It could reduce semantic changes of

the overall dialogs to a minimum.

The fourth threat relates to the suitability of evaluation metrics.

We utilize precision, recall, and F1 to evaluate the performance.

We use the dialog labels and utterance labels manually labeled

as ground truth when calculating the performance metrics. The

threats can be largely relieved as all the instances are reviewed

with a concluding discussion session to resolve the disagreement in

labels based on majority voting. There is also a threat related to our

human evaluation. We cannot guarantee that each score assigned

to every bug report is fair. To mitigate this threat, each bug report

is evaluated by 3 human evaluators, and we use the average score

of the 3 evaluators as the final score.

8 RELATEDWORK

Identifying Bug Reports. Identifying bug reports from user feed-

back timely and precisely is vital for developers to update their
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applications. Many approaches have been proposed to identify

bugs or problems from app reviews [24, 25, 30, 45, 46, 58, 74, 75],

mailing lists [69, 70], and issue requests [7, 32, 53, 55, 73]. For ex-

ample, Vu et al. [74] detected emerging mobile bugs and trends

by counting negative keywords based on Google Play. Maalej et

al. [45, 46] leveraged natural language processing and sentiment

analysis techniques to classify app reviews into bug reports, fea-

ture requests, user experiences, and ratings. Scalabrino et al. [58]

developed CLAP to classify user reviews into bug reports, feature

requests, and non-functional issues based on a random forest classi-

fier. Di Sorbo et al. [69, 70] classified sentences in developer mailing

lists into six categories: feature request, opinion asking, problem

discovery, solution proposal, information seeking, and information

giving. Huang et al. [32] addressed the deficiencies of Di Sorbo et

al.’s taxonomy by proposing a convolution neural network (CNN)-

based approach. Our work differs from existing researches in that

we focus on identifying bug reports from collaborative live chats,

which pose different challenges as chat messages are interleaved,

unstructured, informal, and typically have insufficient labeled data

than the previously analyzed documents.

Synthesizing Bug Reports. Several efforts have been made to

synthesize bug reports by utilizing heuristic rules automatically

[8, 9, 20, 80]. As heuristic approaches often fail to capture the diverse

discourse in bug reports, learning-based approaches have been pro-

posed [11, 17, 68, 78]. Song et al. [68] proposed a tool that integrates

three SVM models to identify the observed behavior, expected be-

havior, and S2R at the sentence level in bug reports. Zhao et al. [78]

proposed an SVM-based approach that automatically extracts the

textual description of steps to reproduce (S2R) from bug reports.

Chaparro et al. [11] proposed a sequence-labeling-based approach

that automatically assesses the quality of S2R in bug reports. Chen

et al. [17] proposed a seq2seq-based approach that automatically

generates titles regarding the textual bodies written in bug reports.

Most of these methods focus on structuring or synthesizing bug re-

ports from textual descriptions that depicting bugs in a single-party

style, while our approach targets to automatically structure and syn-

thesize bug reports frommulti-party conversations, complementing

the existing studies on a novel resource.

Knowledge Extraction from Collaborative Live Chats. Re-

cently, more andmorework has realized that collaborative live chats

play an increasingly significant role in software development, and

are a rich and untapped source for valuable information about the

software system [13, 14, 42]. Several studies are focusing on extract-

ing knowledge from collaborative live chats. Chatterjee et al. [15]

automatically collected opinion-based Q&A from online developer

chats. Shi et al. [64] proposed an approach to detect feature-request

dialogues from developer chat messages via the deep siamese net-

work. Qu et al. [56] utilized classic machine learning methods to

predict user intent with an average F1 of 0.67. Rodeghero et al. [57]

presented a technique for automatically extracting information rel-

evant to user stories from recorded conversations. Chowdhury and

Hindle [19] filtered out off-topic discussions in programming IRC

channels by engaging Stack Overflow discussions. The findings of

previous work motivate the work presented in this paper. Our study

is different from the previous work as we focus on identifying and

synthesizing bug reports from massive chat messages that would

be important and valuable information for software evolution. In

addition, our work complements the existing studies on knowledge

extraction from developer conversations.

9 CONCLUSION

In this paper, we proposed a novel approach, named BugListener,

which can automatically identify and synthesize bug reports from

live chat messages. BugListener leverages a novel graph neural net-

work to model the graph-structured information of dialog, thereby

effectively predicts the bug-report dialogs. BugListener also adopts

a twice fine-tuned BERT model by incorporating the transfer learn-

ing technique to synthesize complete bug reports. The evaluation

results show that our approach significantly outperforms all other

baselines in both BRI and BRS tasks. We also conduct a human

evaluation to assess the correctness and quality of the bug reports

generated by BugListener. We apply BugListener on recent live

chats from five new communities and obtain 31 potential bug re-

ports in total. Among the 31 bug reports, 77% of them are correct.

71% of human evaluators agree that BugListener is useful. These

results demonstrate the significant potential of applying BugLis-

tener in community-based software development, for promoting

bug discovery and quality improvement.
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