
Developer-Intent Driven Code Comment Generation

Fangwen Mu∗†‡, Xiao Chen∗†‡, Lin Shi∗†‡§, Song Wang¶, Qing Wang∗†‡
∗ State Key Laboratory of Intelligent Game, Beijing, China

† Science and Technology on Integrated Information System Laboratory,

Institute of Software Chinese Academy of Sciences, Beijing, China
‡ University of Chinese Academy of Sciences, Beijing, China

¶ Lassonde School of Engineering, York University, Toronto, Canada

{fangwen2020, chenxiao2021, shilin, wq}@iscas.ac.cn, wangsong@yorku.ca

Abstract—Existing automatic code comment generators mainly
focus on producing a general description of functionality for
a given code snippet without considering developer intentions.
However, in real-world practice, comments are complicated,
which often contain information reflecting various intentions
of developers, e.g., functionality summarization, design ratio-
nale, implementation details, code properties, etc. To bridge
the gap between automatic code comment generation and real-
world comment practice, we define Developer-Intent Driven
Code Comment Generation, which can generate intent-aware
comments for the same source code with different intents. To
tackle this challenging task, we propose DOME, an approach
that utilizes Intent-guided Selective Attention to explicitly select
intent-relevant information from the source code, and produces
various comments reflecting different intents. Our approach is
evaluated on two real-world Java datasets, and the experimental
results show that our approach outperforms the state-of-the-art
baselines. A human evaluation also confirms the significant po-
tential of applying DOME in practical usage, enabling developers
to comment code effectively according to their own needs.

Index Terms—Code Comment Generation, Intent-Controllable
Comment Generation, Automated Comment-Intent Labeling

I. INTRODUCTION

Code comment generation concerns the production of a

concise and fluent description of source code that facilitates

software development and maintenance by enabling developers

to comprehend, ideate, and document code effectively. Typi-

cally comment generation methods model the input code and

output comment as a one-to-one mapping without considering

developers’ intents. Whereas, a code snippet is often associated

with multiple comments reflecting different intents, which is

a one-to-many mapping. As the example shown in Figure 1,

the human-writing comment of the method start() consists of

five sentences that reflect the different intent of the developer.

The first sentence summarizes the overall functionality of the

code, the second sentence explains the design rationale, and

the 3rd-5th sentences describe the implementation details, the

usage, and the property of the code, respectively. However, the

comments automatically generated by the three state-of-the-art

(SOTA) methods only describe the functionality of the method

start(). Furthermore, we analyzed the methods of the top 10

Java projects with the most stars from GitHub, and found that

over 66.31% comments contain more than one sentence. At the

§Corresponding author.

Rencos (Zhang et al. ICSE20): starts the execution of the executor
Editsum (Li et al. ASE21): starts the thread
AST-Trans (Tang et al. ICSE22): starts the task

/**
 * Starts the background initialization.
 * With this method the initializer becomes active and
 * invokes the initialize() method in a background task.
 * Get an external executor to create a background task.
 * If there is not any, it creates a new one.
 * After the construction of a BackgroundInitializer()
 * object it start() method has to be called .
 * Return a flag whether the initializer could be started
 * successfully
*/
public synchronized boolean start() {
 if (!isStarted()) {
 final ExecutorService tempExec;
 executor = getExternalExecutor();
 if (executor == null) {
 executor = tempExec = createExecutor();
 } else {
 tempExec = null;}
 future = executor.submit(createTask(tempExec));
 return true;}
 return false;
}

What the SOTA methods generate:

What developers want:

Over 66.31% comments
contains more than one
sentence

Average length is 3.06

Statistic of Top 10 star Github projectsWhat: Starts the background initialization.
Why: With this method the initializer
becomes active and invokes the
initialize() method in a background task.
How-it-is-done: Get an external
executor to create a background task. If
there is not any, it creates a new one.
How-to-use: After the construction of a
BackgroundInitializer() object it start()
method has to be called.
Property: Return a flag whether the
initializer could be started successfully.

Fig. 1: A motivation example of intent driven code comment

generation.

same time, we found that each comment involves 2.81 different

intents on average by manually reviewing 100 comments.

The observation indicates that the one-to-one code comment

generation can hardly fulfill practical needs.

Thus it is appealing and important to develop an approach

to generate comments which can satisfy various intents. To

bridge the gap, we define developer-intent driven code com-

ment generation, which aims to produce comments that are

coherent with the given intents, i.e., what, why, how-to-use,

how-it-is-done, and property, following previous work [1] [2].

In practice, developers may focus on a particular aspect

instead of a full description of the code when writing different

kinds of comments. For example, when the developers aim to

describe the ‘How-it-is-done’ of the start() method as shown

768

2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE)

1558-1225/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE48619.2023.00073

20
23

 IE
EE

/A
CM

 4
5t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 S
of

tw
ar

e
En

gi
ne

er
in

g
(IC

SE
) |

 9
78

-1
-6

65
4-

57
01

-9
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

SE
48

61
9.

20
23

.0
00

73

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 09,2023 at 10:52:20 UTC from IEEE Xplore. Restrictions apply.

in 1, they would pay more attention to the middle part of the

code, which contains more running logic and implementation

details. When the developers aim to describe the ‘Property’,

they would pay more attention to the return value at the end

and the parameter type of the method at the beginning.
In light of this, we propose DOME, a Developer-intent

driven cOde coMment gEneration approach that can generate

various comments for one code snippet under different intents

by leveraging intent-guided selective attention. Specifically,

DOME consists of three main components: an Exemplar

Retriever, an Encoder Layer, and a Decoder Layer. Given a

code snippet and an intent category, the Exemplar Retriever

first selects the code-comment pairs with the same intent as

the given intent from the pre-defined corpus as the retrieval

corpus. Then, it employs the DPR model [3] to retrieve the

most similar comment from the retrieval corpus and treat it as

the exemplar. Next, we input the code snippet, intent category,

and the exemplar into the Encoder Layer to encode them into

semantic representations. Finally, the decoder layer equipped

with intent-guided selective attention is guided by the given

intent to select the most relevant information from the semantic

representations to generate an intent-aware comment.
Furthermore, since training and evaluating DOME require

a large volume of labeled comment-intent data, we develop

a COmment-INtent labeling tool, named COIN, to support

the automatic annotation of comment intents for the code-

comment dataset. Specifically, we first sample a total of 20K

code-comment data from two large-scale Java datasets, and

manually annotate these data to train COIN, which achieves

the high performance of 89.6% Macro-F1 on average. The

well-trained COIN is then utilized to automatically annotate

the large-scale code-comment corpus that will be used to train

our comment generation model DOME.
To evaluate our approach, we conduct experiments on two

real-world datasets in Funcom [4] and TLC [5], and the

results show that our approach outperforms the state-of-the-

art (SOTA) baselines by 25.66%, 16.59%, and 18.38% with

respect to BLEU-4, ROUGE-L, and METEOR on Funcom

dataset. On TLC dataset, DOME improves the performance

on BLEU-4, ROUGE-L, and METEOR by 10.06%, 11.09%,

and 14.93%, respectively. We also conduct a human evaluation

to assess the generated comments on three aspects: accuracy,

adequacy, and naturalness, showing that DOME can generate

useful and relevant comments.
Our main contributions are outlined as follows:

• Technique: a novel comment generation model, named

DOME, which utilizes the intent-guided selective atten-

tion to explicitly select relevant information from source

code based on the given intent for generating comments.

To the best of our knowledge, this is the first work that

incorporates developer intents in comment generation.

• Labeling Tool: an automated comment-intent labeling

tool, named COIN, which helps build high-quality intent-

annotated code comment datasets.

• Evaluation: an experimental evaluation of DOME

against state-of-the-art baselines, which shows that

DOME outperforms all baselines, together with a human

evaluation, which further confirms the significant poten-

tial of applying DOME in real-world practice, for en-

abling developers to comment code effectively according

to their own needs.

• Data: publicly accessible dataset and source code [6] to

facilitate the replication of our study and its application

in extensive contexts.

II. BACKGROUND AND PROBLEM DEFINITION

A. Taxonomy of Comment Intent

In this work, we use the intent taxonomy of code com-

ments proposed by [1], which consists of six categories, i.e.,

what, why, how-to-use, how-it-is-done, property, and others,

as described in Table I. Note that, since the others comments

are defined as the unspecific and ambiguous comments, we

consider the code-comment pairs with the intent of others as

noisy data, and remove them if identified.

TABLE I: The intent taxonomy of code comments [1]

Category Description Example

What
Describes the functionality of
a method

“A helper function that
process the stack.”

Why
Explains the reason why a
method is provided or the
design rationale of the method

“Get a copy of the map
(for diagnostics)”

How-
to-use

Describes the usage or the
expected set-up of using a
method

“Should be called be-
fore the object is used”

How-it-
is-done

Describes the implementation
details of a method

“Convert the byte[] to
a secret key”

Property
Asserts properties of a method
including pre-conditions or
post-conditions of a method

“Wait until seqno is
greater than or equal
to the desired value or
we exceed the timeout.”

Others
Unspecified or ambiguous
comments

“The implementation is
awesome.”

B. Transformer

In this work, we use the Transformer [7] as the backbone to

construct DOME. Transformer is a relatively popular model

in recent years. It has achieved promising results in many

fields, such as machine translation [8] and text summarization

[9]. Transformer follows the encoder-decoder framework with

stacked encoder blocks and decoder blocks. There are two

main layers in each encoder block and decoder block, i.e.,

a Multi-head Attention Layer (MHA) and a Feed-Forward

Network (FFN). The residual connection is employed around

each layer, followed by layer normalization (Norm) [10]. Since

Transformer removes the recurrence mechanism, it cannot uti-

lize the order information of input tokens directly. Therefore,

positional encoding (PE) is used in Transformer to provide the

position information of each token.

C. Problem Definition

The developer-intent driven code comment generation task

is formulated as follows: Given a code snippet x and an

intent category e of the comment to be generated, the goal

of the task is to generate a comment y that reflects the intent

769

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 09,2023 at 10:52:20 UTC from IEEE Xplore. Restrictions apply.

 𝑂

Intention ee
Retrieve Corpus

of Intention e

DPR Model
Code 𝒙

Exemplar 𝒛

Feed-Forward

Code Encoder

Multi-Head
Self-Attention

Feed-Forward

Exemplar
Encoder

Multi-Head
Self-Attention

Intention
Embedding

 ×𝑵

III.C Decoder LayerIII.B Encoder LayerIII.A Exemplar Retriever

Intention
e

Code𝒙

Comment 𝒚

MatMul

MatMul

Scale Element-wise Multiply

Intent-guided Selective A
ttention

𝑸𝒕𝑲𝒕
MatMul

𝑸𝑺𝑲𝑺

Top-K Selection

Predicted
Comment 𝒚’

Cross
Attention

Selective
Attention

Gated Fusion

 𝑬

Feed Forward

Linear & Softmax

 𝑬

 𝒁 𝑿𝒔𝒕𝒂, 𝑿𝒕𝒐𝒌

 𝑿𝒔𝒕𝒂

 𝑬

 𝒁

 𝑿𝒕𝒐𝒌

Softmax

Statement-Level Token-Level

Multiple Intent Corpus

Top-K Selection

Multi-Head Self Attention

 ×𝑵

 ×𝑵
Softmax

Fig. 2: The architecture of DOME

e. Essentially, the model learns to estimates the probability:

P (y|x, e) = ∏
i=1 P (yi|y<i, x, e) when training, and generate

the prediction comment y′ that maximizes the conditional

likelihood y′ = argmaxy′P (y′|x, e) when inference.

III. APPROACH

Figure 2 illustrates the overview of DOME, which con-

sists of three main components: (1) Exemplar Retriever,

for retrieving the most similar comment as the exemplar,

which can provide essential clues about linguistic patterns and

expressions; (2) Encoder Layer, for encoding the source code,

retrieved exemplar, and target intent into semantic representa-

tions; and (3) Decoder Layer, for leveraging the intent-guided

selective attention to extract the most relevant information

from the semantic representations and generating the intent-

aware comments.

A. Exemplar Retriever

Suppose we have a multiple intent corpus D that consists

of triples < codei, commenti, intenti >, where commenti is

the comment for code snippet codei under the intent category

intenti. Given a code snippet x and an intent category e, we

first collect triplets with the same intent as the given category

e from the corpus D, and take them as the retrieval corpus De.

This step is simple yet effective, as (1) intuitively, comments

with different intents are different in content and expression,

and treating them as exemplars may mislead the model to

generate comments that are irrelevant to the target intent e.

(2) it can largely reduce the number of candidate triples in

the retrieval corpus, especially for large-scale datasets, so as

to improve the speed of training and inference.

Then, we use the retrieval techniques to match the most

similar comment from the retrieval corpus based on the given

code x. In previous work [11]–[13], the traditional term-

based retrieval techniques (e.g., TF-IDF [14] and BM25 [15])

have been widely used. Although the term-based retrieval

methods have the advantages of time-saving and convenience,

it has been pointed out that they may cause the model to fail

to converge [12] or hurt the model performance [16] since

they cannot exploit semantic-level features of the code and

comments, and are prone to retrieval of dissimilar data. To

alleviate this problem, we employ the Dense Passage Retriever

(DPR) [3] model as the retriever. DPR is the SOTA technique

for open-domain question answering, which contains two

encoders that encode queries and passages into dense vector

representations, respectively. It can leverage the semantic-

level information of queries and passages, and measure their

similarity score by calculating the dot product. The DPR

model has been shown to be effective in code search and code

comment generation tasks [17]. We adopt the pretrained DPR

model provided by [17] to retrieve the example z.

B. The Encoder Layer

Once we have an exemplar z, we feed it into the Encoder

Layer together with the code x and the intent e. As shown in

figure 2, the Encoder Layer consists of one intent embedding

layer and two different encoders (i.e., code encoder and

exemplar encoder). The intent embedding layer is utilized to

capture the high-level abstraction of intent expressions. The

code encoder and exemplar encoder aim to extract the semantic

features from the code snippet and the retrieved exemplar,

respectively. We construct the two encoders by following

the structure of the vanilla Transformer Encoder [7] that we

have introduced in Section II. The only difference is that our

code encoder outputs two-level representation sequences for

tokens and statements, respectively. There are two reasons

that we take the additional statement-level information into

consideration: First, statements are essential units for carrying

source code semantics [18]. Second, it is used to calculate the

intent-guided selective attention for extracting intent-relevant

semantic features, which will be described in Section III-C2.

1) Code Encoder: Assume a code snippet x =
[x1, x2, ..., xL] contains L statements, and the l-th statement

is denoted as [xl,1, xl,2, ..., xl,M], where xl,i is the ith token.

770

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 09,2023 at 10:52:20 UTC from IEEE Xplore. Restrictions apply.

When preparing the embedding sequences, we combine all

the statements of the given code snippet into one sequence,

rather than input each statement into the model separately. It

is mainly because that statements in different sequences can

hardly share and convey information to each other. To make

the code encoder understand the end of one statement and the

start of another statement in the same sequence, we insert a

special token [SEP] after the end of each statement, so the aug-

mented statement xl = [xl,1, xl,2, ..., xl,M+1], where xl,M+1 is

the [SEP]. The code snippet x = [x1,1, ..., xl,m, ..., xL,M+1] is

first converted into a sequence of d dimensional embeddings−→x ∈ R
(M+1)L×d via a token and position embedding layer.

Then, we input the embedding sequence −→x into the N identi-

cal encoder blocks to calculate the token-level representations.

For n-th block of the code encoder, suppose that the input is

Hn−1, the output Hn is calculated as follows:

Hn
1 = Norm

(
Hn−1 +MHA(Hn−1, Hn−1, Hn−1)

)
(1)

Hn = Norm

(
Hn

1 + FFN(Hn
1)

)
(2)

where Hn
1 is the hidden states of the first layer in n-th

encoder block. Initially, the embedding sequence −→x is fed

into the first block, and the N -th block outputs the final

token representation Xtok ∈ R
(M+1)L×d. Next, we perform

the MaxPooling on the token representation in each statement

to compute the representation of that statement:

Xsta
l = MaxPooling([Xtok

l,1 , Xtok
l,2 , ..., Xtok

l,M+1]) (3)

We concatenate each statement representation to obtain the

statement-level representation sequence Xsta ∈ R
L×d.

2) Exemplar Encoder: We construct the exemplar encoder

by using the same structure as the code encoder but with

different parameters. Similar to the code encoder, the exemplar

encoder embeds the retrieved exemplar z = [z1, z2, ..., zT] into

the sequence of embeddings −→z ∈ R
T×d. Then, the exemplar

representation Z ∈ R
T×d can be computed via the equation

(1) and (2).

3) Intent Embedding: Since the comment intents provide

a high-level semantic abstraction of the comment, we take

the intents as additional input and map them into the dense

semantic vectors. For each intent e, we use an embedding

matrix to map it into the intent embedding vector E, and

then update the parameters of the embedding matrix through

training. E will be utilized to guide the decoder to select

intent-relevant information from the outputs of the encoders.

C. The Decoder Layer

The decoder layer aims to produce the intent-aware com-

ment by explicitly capturing the important clues from the

encoder outputs based on the intent embedding. As shown in

Figure 2, the decoder is composed of a stack of N identical

decoder blocks, and each block consists of three layers where

the first and the last layers are the same as those in the en-

coder. The additional layer contains an Intent-guided Selective

Attention (ISA) and a Multi-Head Cross Attention followed

by a Gated Fusion layer. In this section, we first introduce the

decoding process of the decoder and then describe the details

of the Intent-guided Selective Attention.

1) Decoding Process: Given the representation sequences

Xtok, Xsta, Z and the intent embedding E, the n-th decoder

block first gets the output of the first layer Sn
1 via Eq. (1).

Then, in the second layer, the block concatenates the hidden

states Sn
1 and intent embedding E as the query vector:

Qn
1 = [Sn

1 ; E] (4)

where [;] denotes concatenation operation. Next, it captures

information from the source code and exemplar by performing

ISA over the token-level and statement-level representations

and MHA over the exemplar representation, respectively:

On
ISA = ISA(Qn

1 , X
tok, Xsta) (5)

On
MHA = MHA(Qn

1 , Z, Z) (6)

With the equation (4), the model can obtain the intent se-

mantics and focus more on the information that related to

the intent. To effectively leverage the information from the

source side, we utilize the gate mechanism [19] to adaptively

incorporate the On
ISA containing source code features and the

On
MHA containing exemplar features:

β = Sigmoid(W T
gate[O

n
ISA ; On

MHA]) (7)

Sn
2 = β ·On

ISA + (1− β) ·On
MHA (8)

where β is the degree of integration between source code and

exemplar. A larger value of the β (ranges from 0 to 1) may

indicate that the retrieved exemplar is semantically different

from the source code, and the model should pay more attention

to the source code. Wgate is a trainable parameter matrix, and

Sn
2 is the hidden states of the second layer. Then, according to

Eq. (2), the n-th block uses the Sn
2 to compute the output of

the last layer Sn. After the calculation of N decoder blocks,

the decoder gets the hidden states of the last decoder block S.

For the i-th decoding step, the probability of i-th token y′i
can be calculated by projecting the concatenation of the state

si and intent Embedding E via a linear layer followed by a

Softmax function.

p(y′i|y′1, y′2, ..., y′i−1) = Softmax(W T
o [sj ;E] + bo) (9)

where Wo is the parameter matrix and bo is the bias. Ulti-

mately, we use the Argmax function to generate the prediction

comment y′.

y′ = Argmax([p(y′1) ; · · · ; p(y′i) ; · · ·]) (10)

2) Intent-guided Selective Attention (ISA): To make the

decoder focus on a particular aspect instead of a complete

description of the code when generating different kinds of

comments, we propose intent-guided selective attention that

enables the model to catch the intent-relevant information and

ignore the irrelevant noise. Our proposed attention variant

contains three steps: (1) statement-level attention selection, (2)

token-level attention selection, and (3) combining attentions.

771

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 09,2023 at 10:52:20 UTC from IEEE Xplore. Restrictions apply.

Statement-level Attention Selection. In this step, our goal

is to select the most relevant statements based on the given

intent. The inputs are the intent embedding E, statement

representation Xsta, and query vector Qn
1 which is the con-

catenation of the hidden states Sn
1 and intent embedding E.

We treat the Qn
1 as the query, Xsta as the key and the value,

and perform a linear projection on them:

Qs = Qn
1W

Qs , Ks = XstaWKs , Vs = XstaWVs (11)

where WQs , WKs are the parameter matrices. Then, the

statement attention scores are computed as:

αs =
QsKT

s√
d

(12)

where αs is the attention scores matrix. The value of the

score αs(i, j) denotes the relevant score between the j-th

target token and the i-th source statement, and the scores with

larger values demonstrate higher relevance. To make the model

focus more on intent-relevant statements, we employ the top-k
selection strategy. Specifically, we reserve the k largest scores

of each row in αs and set other scores in the row to negative

infinity:

αs(i, j) =

{
αs(i, j) αs(i, j) ≥ αk

s (i, ∗)
−∞, αs(i, j) < αk

s (i, ∗)
(13)

where k is a hyper-parameter, αk
s (i, ∗) is the k-th largest

score of row i. In this way, the most contributive statements

for attention are reserved and other irrelevant information is

filtered. We normalize the scores matrix with the Softmax

function and obtain the statement-level attention As:

As = Softmax(αs) (14)

After the normalization, the attention weights between the

target tokens and the unrelated source statements will be

approximately 0.

Token-level Attention Selection. Different from natural

language, the programming language contains many tokens

that are not associated with source code semantics [20],

such as the program separators (the period, the semicolon,

parentheses, and braces). Since such irrelevant tokens might

frequently appear in the source code, they may be assigned

high attention weights when the model attempts to get the

information from the source code tokens. So this step aims

to remove the distraction from those irrelevant tokens. Similar

to the statement attention selection, we input the token-level

representation Xtok, intent embedding E, and the query vector

Qn
1 , and output the token-level attention Al

t for each statement

l using the equation (11)-(14):

Combining Attentions. We combine the sentence-level

attention As and token-level attention At to get the final

selective attention matrix by conducting simple scalar element-

wise multiplication:

Al = As(l)×Al
t (15)

where Al is the final token-level attention of the l-th statement,

As(l) is the attention matrix for the l-th statement. The

intuition behind this is that when developers comment a code

with a specific intent, they may first look for related statements

in the whole code snippet and select the most important code

token from these statements. Finally, the output of ISA is

computed as:

On
ISA = AVs (16)

where A = [A1, A2, ..., AL].
Following the distribution A, the attention can then become

focused on the most contributive information.

IV. THE COMMENT-INTENT LABELING TOOL

Since training and evaluating our proposed approach require

a large volume of labeled comment-intent data, we develop

a COmment-INtent labeling tool, named COIN, to support

the automatic annotation of comment intents. This section

introduces the design of COIN and presents the analysis

results of its effectiveness.

A. The CodeBERT-based Comment-Intent Classifier

Our comment-intent classifier utilizes the CodeBERT [21]

as the backbone. CodeBERT is a powerful pre-trained lan-

guage model built on top of the BERT-like [22] architecture.

It supports paired natural language and multi-lingual program-

ming language data and has achieved great success in code

search and code comment generation [23], [24]. We use the

special separator tokens [CLS] and [SEP] to concatenate a

comment and its corresponding code into a sequence and input

it to the CodeBERT for embedding. The final token embedding

of [CLS] is considered as the representation of the aggregated

sequence. Then we feed the final embedding of [CLS] into

a two-layer MLP followed by a softmax layer to obtain the

probability of the comment intent. For training, we load the

pre-trained parameters of CodeBERT1 and fine-tune them with

the cross entropy loss function on our annotated dataset that

will be introduced later.

TABLE II: Statistics of the manually-labeled intent dataset

Categoty Count Proportion

What 12,264 61.32%
Why 1,708 8.54%

How-to-use 573 2.87%
How-it-is-done 2,933 14.67%

Property 2,270 11.35%
Others 252 1.26%

B. Effectiveness Evaluation

1) Data Preparation: To train our comment-intent clas-

sifier, we randomly sample 20K code-comment pairs from

two large-scale Java benchmark datasets (10K data for each),

i.e., Funcom [4] and TLC [5], and invite five developers to

manually classify the data into six intent categories.

Human Annotators. We recruit five developers, including

two senior researchers, one Ph.D. student, and two Master

1https://huggingface.co/microsoft/codebert-base

772

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 09,2023 at 10:52:20 UTC from IEEE Xplore. Restrictions apply.

TABLE III: The performance of intent classification for code comments

Method
What Why How-to-use How-it-is-done Property Others Macro-Average

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

LGBM 87.4 92.3 89.8 81.5 76.8 79.0 89.9 72.5 80.1 71.6 65.8 68.5 90.8 89.7 90.2 12.6 6.4 8.4 72.3 67.2 69.3
RF 83.9 94.3 88.8 84.0 73.2 78.2 92.3 70.3 79.6 75.8 54.5 63.4 90.9 89.3 90.0 39.9 29.7 30.3 77.8 68.5 71.7
DT 86.3 87.0 86.6 73.7 74.0 73.8 74.0 69.5 71.5 63.0 59.9 61.3 87.8 86.8 87.2 16.6 32.5 20.6 68.3 66.9 66.8

CNN 87.4 93.3 90.2 82.7 77.3 79.9 90.4 71.3 79.5 71.8 65.7 68.6 94.5 89.4 91.8 82.1 29.2 41.5 84.8 71.0 75.3
BiLSTM 88.4 89.0 88.6 78.5 74.6 76.4 81.0 62.8 70.4 60.5 68.8 64.2 96.1 88.2 92.0 10.0 0.9 1.7 69.1 64.1 65.5

BiLSTM-Attn 87.3 91.5 89.3 79.5 75.2 77.2 80.2 68.1 73.3 68.2 67.3 67.7 96.1 88.6 92.1 0.0 0.0 0.0 68.5 65.1 66.6

COIN 92.5 93.5 93.0 87.1 86.1 86.6 93.0 86.6 89.6 78.6 79.2 78.9 96.4 92.9 94.6 99.3 90.7 94.7 91.1 88.2 89.6

students, who are familiar with Java development and have at

least three years of software development experience.

Procedure. To guarantee the accuracy of the labeling out-

comes, we annotate each code-comment pair following a two-

round process: First, two developers read the comment and

the source code to decide its intent category. Each developer

is assigned 8K code-comment pairs and annotates them inde-

pendently. Second, after annotation, all five developers resolve

conflicts via majority voting. The annotation process is labor-

intensive. For each code-comment pair, developers need to

read the source code and its one-sentence comment, and assign

an intent category. One developer could label ∼ 64 pairs in

an hour on average, and label ∼ 470 pairs per day. We spend

17 days for labeling the 8K pairs and ∼ 7.5 days for merging

conflicts. Thus, the whole labeling process takes 24.5 days.

The agreement between the two developers reaches 0.81 of

Cohen’s Kappa. The statistics of the final intent-labeled dataset

are shown in Table II.

2) Baselines: Chen et al. [1] experimented with four com-

monly used text classifiers (i.e., Light Gradient Boosting Ma-

chine (LGBM) [25], Random Forest (RF), Decision Tree (DT)

[26], and Bi-directional Long Short-Term Memory (BiLSTM)

[19]) on classifying code comments into the five intents, and

reported that the Random Forest classifier achieves the highest

performance. Following their work, we also include those

commonly used text classifiers as our baselines. Besides, we

additionally add two neural-based classifiers (i.e., Convolu-

tional Neural Network (CNN) [27] and BiLSTM+Attention

[28]) into the comparison baselines.

3) Evaluation Metrics: Three commonly used metrics are

used to evaluate the effectiveness for each category of com-

ment intent, i.e., Precision, Recall, and F1. Besides, as the

comment-intent classification is a multi-class classification

task, we also use the Macro-Precision, Macro-Recall, and

Macro-F1 to evaluate the overall performance.

4) Results: Table III demonstrates the performance of

COIN. Overall, COIN outperforms other classifiers, which

achieves 91.1% of Macro-Precision, 88.2% of Macro-Recall,
and 89.6% of Macro-F1 in 10-fold cross-validation. Compared

with the best baseline classifier (CNN), COIN improves the

performance of Macro-Precision, Macro-Recall, and Macro-
F1 by 7.43%, 24.23%, and 18.99%, respectively. The results

show that COIN can achieve highly satisfactory performance

on comment-intent classification, thereby enabling the automa-

tion of annotating intents for the code-comment dataset.

TABLE IV: Statistic of Funcom and TLC datasets

Dataset Funcom TLC
Train 1,178,923 53,528
Valid 62,383 7,555
Test 69,259 4,985

What 762,884 36,604
Why 168,912 7,708

How-to-use 27,543 1,085
How-it-is-done 166,286 14,392

Property 184,940 6,279

V. EXPERIMENTAL DESIGN

A. Dataset

Since Funcom [4] and TLC [5] are the most widely used

benchmark datasets for code comment generation tasks [11],

[29]–[33], we select these two datasets to evaluate our ap-

proach in this study. Funcom contains 2.1M code-comment

pairs from 29K Java projects, which were collected by Lopes

et al. [34] and cleaned by LeClair et al. [4]. TLC has 87,136

code-comment pairs collected from more than 9K Java GitHub

repositories created from 2015 to 2016 with at least 20 stars.

They first extracted Java methods and Javadocs, and treated

the first sentence of the Javadoc as the ground-truth comment

of the corresponding code. For the sake of fairness, we directly

use the Funcom and TLC datasets open sourced by the previ-

ous work [35]. They reported that many benchmark datasets

have noisy data and provided a “clean” version of these

datasets, which were cleaned by their automated cleaning tool

CAT2. After that, we use our trained comment-intent labeling

tool COIN to automatically annotate the comments in the

two datasets with the corresponding intent categories. Since

the others comments are seen as unspecified or ambiguous

comments, we exclude all data with the intent category of

others. In common with [11], we further remove the exactly

duplicated code-comment pairs in the test set for TLC dataset.

The statistics of the two preprocessed datasets are shown in

Table IV.

B. Evaluation Metrics

We evaluate the performance of different approaches us-

ing common metrics including corpus BLEU [36], ROUGE-

L [37], and METEOR [38]. BLEU is a standard evalua-

tion metric in the code comment generation works. BLEU

measures the n-gram precision by computing the overlap

ratios of n-grams and applying a brevity penalty on short

translation hypotheses. ROUGE-L is defined as the length of

2https://github.com/BuiltOntheRock/FSE22 BuiltOntheRock

773

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 09,2023 at 10:52:20 UTC from IEEE Xplore. Restrictions apply.

the longest common subsequence between generated sentence

and reference, and is based on recall scores. METEOR is

based on the harmonic mean of unigram precision and recall,

with recall weighted higher than precision.

To ensure the consistency of metrics calculation, we calcu-

late the values of the three metrics following the same scripts

used in AST-Trans [39].

C. Implementation Details

To train DOME, we first shuffle the training data and set

the mini-batch size to 256 and 64 for Funcom and TLC

datasets, respectively. For each batch, the code snippets and

comments are padded with a special token [PAD] to the

maximum length. Following previous studies [11], [12], we

limit the maximum length of the comment to 15 for Funcom

and 30 for TLC. To save the computing resource, we limit the

maximum vocabulary size to 50K and 30k for Funcom and

TLC datasets. The out-of-vocabulary words are replaced by

[UNK]. The word embedding size of both code and comment

is set to 512, the dimension of intent embedding is set to 128.

The k is set to 10 for tokens and 5 for statements. We set the

dimensions of hidden states to 512, the number of heads to

8, and the number of blocks to 6, respectively. We train our

approach using the Adam [40] optimizer with the learning

rate 1e-4. To avoid the over-fitting problem, we apply dropout

[41] with 0.2. To reduce training time, we use the greedy

search to generate comments at the training stage. During the

prediction stage, we use the beam search [42] and set the

beam size to 5. Our approach is implemented based on the

Pytorch [43] framework. The experimental environment is a

desktop computer equipped with an NVIDIA GeForce RTX

3060 GPU, intel core i5 CPU, and 12GB RAM, running on

Ubuntu OS.

VI. RESULTS

We address the following three research questions to eval-

uate the performance of DOME:

RQ1 : How does the DOME perform compared to the state-

of-the-art comment generation baselines?

RQ2: How does each individual component in DOME

contribute to the overall performance?

RQ3: What is the perceived quality of intent-aware com-

ments generated by DOME?

A. RQ1: Comparison with Baselines

1) Baselines: We compare our approach with six state-of-

the-art baselines on the comment generation task. All baselines

adopted the hyper-parameter settings reported in the original

paper. To ensure the proper implementation, we reproduced the

six baselines on the same datasets provided in their paper, and

have verified they achieved comparable results as the original

paper reported.

• Hybrid-DRL [44] is a novel reinforcement learning com-

ment generation framework that incorporates an Abstract

Syntax Tree (AST) structure as well as sequential content

of code snippets into a deep actor-critic network.

• CodeTrans [29] is a transformer-based approach that uses

relative distances instead of absolute positions in the atten-

tion computation and applies copy mechanism to copy rare

tokens from the input source code. while only relying on

language-agnostic features

• Re2Com [13] is an exemplar-based comment generation

approach that leverages the advantages of three types of

methods based on neural networks, templates, and IR to

improve the performance.

• Rencos [11] is a hybrid approach that combines the advan-

tages of both IR-based and NMT-based techniques. Given

a code snippet for testing, Rencos retrieves its two most

similar code snippets in the training set from the aspects

of syntax and semantics, and input the three code into the

encoder-decoder model to predict the comment.

• EditSum [12] is a retrieve-and-edit framework for code

comment generation. Given a code snippet, EditSum first

retrieves its most similar code snippet, and treats the cor-

responding comment as a prototype. Then, it combines the

pattern in the prototype and semantic information of the

input code to generate the target comment.

• AST-Trans [39] is the most recent study for comment gen-

eration using a novel Transformer-based model. AST-Trans

leverages tree-structured attention to dynamically assign

weights to related nodes, while considering the ancestor-

descendant and sibling relationships of AST. This structure

information is incorporated into the model to generate the

target comments.

2) Setting: As aforementioned, this study is the first work

to generate various comments for one code snippet. The

existing comment generation approaches are trained to learn a

one-to-one mapping, and cannot generate various comments

given different intents. Thus, to compare the effectiveness

of comment generation with different intents, we first divide

the test dataset into five groups according to the automated

annotation of comment intents. Then we train all baselines

and our approach on the same training set, test them on each

intent group of the test set, and obtain their performance (i.e.,

BLEU, ROUGE, and METEOR) on each intent category. In

order to facilitate the overall comparison, we also calculate

the average performance of all approaches on the five intent

categories.
3) Results: Table V shows the comparison results between

the performance of DOME and other baselines, and the best

performance is highlighted in bold. Overall, our approach

achieves the best performance on all evaluation metrics. On

Funcom dataset, DOME achieves 31.83, 42.45, and 20.48

points on BLEU, ROUGE-L, and METEOR. Compared with

the best baseline (AST-Trans), DOME improves the per-

formance of BLEU, ROUGE-L, and METEOR by 25.66%,

16.59%, and 18.38%, respectively. On TLC dataset, DOME

achieves 22.20, 36.67, and 16.47 on BLEU, ROUGE-L, and

METEOR. Compared with the best baseline (Rencos), DOME

also achieves 10.06%, 11.09%, and 14.93% improvements on

the three metrics. For each intent category, the performance

of DOME outperforms all the other baselines. It is mainly

774

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 09,2023 at 10:52:20 UTC from IEEE Xplore. Restrictions apply.

TABLE V: Performances of DOME and baselines on each intent category

Intent Method
Funcom TLC

BLEU ROUGE-L METEOR BLEU ROUGE-L METEOR

What

Baseline

Hybrid-DRL 22.44 25.89 10.67 19.69 32.89 13.18

CodeTrans 26.30 32.87 15.05 21.35 36.39 15.63

Re2Com 24.17 28.72 12.53 22.21 35.11 14.94

Rencos 26.19 31.10 14.61 23.28 36.89 16.02

EditSum 27.58 31.06 14.24 21.34 33.73 13.42

AST-Trans 27.84 38.28 18.49 23.42 34.24 17.17

Our
Approach

DOME 33.29 41.67 20.53 25.39 39.56 18.22
DOME w/o ISA 32.01 38.74 18.65 24.37 37.93 16.51

DOME w/o ER 31.33 38.12 18.57 23.82 37.24 16.37

Why

Baseline

Hybrid-DRL 22.65 27.61 11.14 16.47 28.61 11.56

CodeTrans 26.52 35.04 15.88 17.58 32.18 13.96

Re2Com 24.39 30.75 13.22 18.99 31.45 13.09

Rencos 24.81 30.12 14.21 20.55 32.99 14.54

EditSum 27.17 30.98 14.66 18.42 29.85 11.81

AST-Trans 25.96 35.74 17.77 19.31 29.37 14.94

Our
Approach

DOME 33.07 42.31 20.56 21.97 35.31 15.77
DOME w/o ISA 31.79 39.37 19.11 21.41 34.27 15.56

DOME w/o ER 31.13 38.78 18.99 19.60 32.16 12.71

How-to-use

Baseline

Hybrid-DRL 21.16 24.75 10.04 10.25 19.78 7.45

CodeTrans 25.79 32.91 15.24 13.50 24.26 10.28

Re2Com 23.17 27.79 12.18 14.18 23.45 10.09

Rencos 25.54 27.74 13.34 14.62 22.61 10.21

EditSum 25.25 27.25 12.79 14.00 21.51 9.07

AST-Trans 24.93 30.90 15.09 13.24 18.20 9.16

Our
Approach

DOME 31.63 39.31 19.34 17.16 26.11 12.36
DOME w/o ISA 30.57 37.24 17.54 16.74 25.59 11.25

DOME w/o ER 30.42 37.15 17.37 15.33 24.96 10.94

How-it-is-done

Baseline

Hybrid-DRL 17.09 25.29 8.50 14.52 29.36 10.02

CodeTrans 20.65 32.46 13.21 16.36 33.07 12.89

Re2Com 18.61 27.89 10.41 17.08 31.04 11.99

Rencos 19.84 29.28 12.53 18.58 33.73 13.12

EditSum 22.22 29.73 12.62 16.84 31.18 11.12

AST-Trans 19.65 33.60 14.40 17.61 30.32 13.29

Our
Approach

DOME 26.98 39.52 17.65 20.48 36.66 14.73
DOME w/o ISA 26.03 38.19 18.20 19.50 36.57 13.10

DOME w/o ER 25.78 37.73 18.10 19.14 35.72 13.01

Property

Baseline

Hybrid-DRL 23.30 34.84 15.09 21.53 39.37 17.17

CodeTrans 27.00 41.95 19.53 22.70 42.63 19.33

Re2Com 24.85 37.77 17.08 23.37 40.79 18.92

Rencos 25.57 35.60 16.39 23.82 38.85 17.76

EditSum 26.79 36.09 16.60 22.35 37.74 16.33

AST-Trans 28.29 43.54 20.73 23.54 36.56 18.47

Our
Approach

DOME 34.18 49.43 24.32 26.01 45.73 21.29
DOME w/o ISA 32.21 46.92 22.70 25.35 43.68 19.47

DOME w/o ER 31.80 46.09 21.59 25.01 42.85 19.16

Average

Baseline

Hybrid-DRL 21.33 27.68 11.09 16.49 30.00 11.88

CodeTrans 25.25 35.05 15.78 18.30 33.71 14.42

Re2Com 23.04 30.58 13.09 19.17 32.37 13.81

Rencos 24.39 30.77 14.22 20.17 33.01 14.33

EditSum 25.80 31.02 14.18 18.59 30.80 12.35

AST-Trans 25.33 36.41 17.30 19.42 29.74 14.61

Our
Approach

DOME 31.83 42.45 20.48 22.20 36.67 16.47
DOME w/o ISA 30.52 40.09 19.24 21.47 35.61 15.18

DOME w/o ER 30.09 39.57 18.92 20.58 34.59 14.44

because DOME can effectively utilize the intent information

to guide the model to generate relevant and fluent comments.

Answering RQ1: For each intent category, DOME out-

performs the state-of-the-art baselines in terms of three

metrics on both two datasets. Overall, compared to the

best baselines, DOME improves the performance of

BLEU, ROUGE-L, and METEOR by 25.66%, 16.59%,

and 18.38% on Funcom dataset, by 10.06%, 11.09%, and

14.93% on TLC dataset, respectively.

B. RQ2: Component Analysis

1) Variants: To evaluate the contribution of core compo-

nents, we obtain two variants: (1) DOME w/o ISA, which

replaces the intent-guided selective attention with the vanilla

cross attention to generate comments. (2) DOME w/o ER,

which removes the exemplar retriever and only uses the

encoder-decoder framework to generate comments. We train

the two variants with the same experimental setup as DOME

and evaluate their performance on the test sets of Funcom and

TLC, respectively.

775

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 09,2023 at 10:52:20 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: The results of human evaluation.

2) Results: Table V presents the performances of DOME

and its two variants. We can see that, removing the two

components makes the performance degrade substantially.

Specifically, when comparing DOME and DOME w/o ISA,

removing the selective attention will lead to a dramatic

decrease in the average BLEU (by 3.70%), ROUGE-L (by

4.23%), and METEOR (by 6.94%) across both datasets. When

comparing DOME and DOME w/o ER, we find that removing

the exemplar retriever will lead to the performance decline in

the average BLEU (by 6.38%), ROUGE-L (by 6.23%), and

METEOR (by 9.97%).

Answering RQ2: Both the ISA and the ER components

have positive contributions to the performance of DOME.

C. RQ3: Human Evaluation

Although the evaluation metrics (i.e., BLEU, ROUGE-L,

and METEOR) can measure the lexical gap between the

generated comments and the references, they can hardly reflect

the semantic gap. Therefore, we perform a human evaluation to

further assess the quality of comments generated by different

approaches.
1) Procedure: We crawl the 10 most-star Java projects on

Github, and use the automated preprocessing tool CAT [35]

to preprocess these data. There are 100 code snippets that are

randomly selected from the preprocessed data. For each code

snippet, we first let each participant select one or more types

of intents they would like to write the comment. Then, we

generate the comments on the developers’ demand by using

DOME as well as the three best-performing baselines (i.e.,

Rencos, EditSum, and AST-Trans). In total, we obtain 400

generated comments as our evaluation subjects.

We recruited six participants, including three Ph.D. students,

one Master student, and two senior researchers. They all have

at least three years of Java development experience, and four

of them have more than six years of development experience.

Note that, all the participants are not co-authors of this

paper. We signed agreements with all the participants, which

explicitly required them to annotate or evaluate objectively.

For each participant, we assign 33-34 code snippets. Each

code snippet has four comments, and is evaluated by two

participants. To ensure fairness, the participants are not aware

of where the comments are generated from. Each participant

is asked to rate each comment from the three aspects: (1)

Accuracy reflects the accuracy of generated comment from the

perspective of whether its content is consistent with the code,

(2) Adequacy refers to whether the generated comments are

missing information in the source code, and (3) Naturalness
reflects the fluency of generated text from the perspective of

grammar. All three scores are integers, ranging from 1 to 5.

Higher score indicates better performance.

2) Results: Figure 3 exhibits the results of human eval-

uation by showing the violin plots depicting the accuracy,

adequacy, and naturalness of comments generated by different

models. Overall, the quality of comments generated by DOME

is better than all baselines in three aspects. The average score

for accuracy, adequacy, and naturalness of comments gener-

ated by our approach are 3.41, 3.44, and 3.91, respectively.

Compared with the best baseline results, DOME achieves

14.43%, 11.17%, and 3.38% improvements in accuracy, ade-

quacy, and naturalness. The results indicate that the comments

generated by DOME tend to be more informative, accurate,

and fluent than other baselines.

Answering RQ3: In human evaluation, compared to the

baselines, DOME achieves the highest scores on accuracy,

adequacy, and naturalness, respectively.

VII. DISCUSSION

A. Qualitative Analysis and Attention Visualization

For qualitative analysis of our approach, we present two

cases generated by the three best-performing baselines to-

gether with DOME. The cases are selected from the real-world

Java projects which we introduced in Section VI-C.

Comment Analysis. As shown in Figure 4, Given a code

snippet, each SOTA baseline can only generate a short com-

ment with a single intent, while our method can produce

comments with multiple intents. In Case 1, the comment gen-

erated by Rencos summarizes the functionality of the method

getURLs. However, it predicts a wrong word “attribute” and

an out-of-vocabulary word that has been replaced by [UNK].

In contrast, the what comment generated by DOME is exactly

the same as the human-written comment. Besides, Compared

776

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 09,2023 at 10:52:20 UTC from IEEE Xplore. Restrictions apply.

Case 1 Case 2

Code

protected URL[] getUrls(Thread thread){
 ClassLoader cl =
 thread.getContextClassLoader();
 ChangeableUrls urls =
 ChangeableUrls.fromClassLoader(cl);
 URL[] urlArray=urls.toArray();
 return urlArray;
}

public int start() throws IOException {
 synchronized (this.monitor){
 ServerSocketChannel ssc =
ServerSocketChannel.open();
 ssc.socket().bind(new
InetSocketAddress(this.listenPort));
 int port = ssc.socket().getLocalPort();
 this.serverThread = new ServerThread(ssc);
 this.serverThread.start();
 return port; }}

Human written

/**
 * Get the URLs from the specific
 * thread.
 * Convert the url context to array.
 * Return the URLs for the thread.
 */

/**
 * Start the client and accept
 * incoming connections.
 * Called when the server starts.
 */

B
as

el
in

e Rencos gets the urls attribute of the <unk> object rollbacks the server
EditSum returns the classloader for the given class starts the thread

AST-Trans returns the urls for the given thread starts the server

O
ur

 A
pp

ro
ac

h

DOME

What: gets the urls from the specified thread
Done: get urls from the thread and return
 them as an array
Property: returns the urls of the specified
 thread

Why: start listening for incoming connections
Usage: this method is called when the server
 is started

At
te

nt
io

n
Vi

su
al

iz
at

io
n Va

ni
lla

O
ur

 IS
A

What

Done
Property

Why

Usage

In
te

nt
 =

 W
hy

ISA weights more at the beginning for ‘what’

In
te

nt
 =

 W
ha

t

ISA weights more in the middle for ‘why’

Fig. 4: Examples of comments generated by each model and attention visualization of DOME.

with the comments generated by Editsum and AST-Trans

which describe the property of the code, the property comment

generated by DOME is more accurate and fluent. In Case 2,

we can see that, all three comments generated by baselines are

short and less informative. While the why and usage comments

generated by DOME have a high semantic similarity with

the human-written comment. The two cases indicate that our

approach can generate multiple accurate and fluent comments

that reflect different intents appropriately. Thereby DOME

could better satisfy the scenarios of real-world comment

practice.

Attention Visualization. We further visualize the vanilla

cross attention and ISA of the two cases in Figure 4. Taking

the what comment “gets the urls from the specified thread”

in Case 1 as an example, we can notice that the distribution

of the vanilla cross attention is fairly dispersed, showing

that it cannot concentrate on the important code tokens. In

contrast, ISA concentrates on the beginning part of method

getURLs, which contains many important tokens, such as

“get”, “URL”, and “thread”. Besides, the vanilla attention

assigns many weights to the program separators (in the green

box), which may introduce noise into the model. While ISA

removes the distraction from irrelevant tokens based on the

top-k selection. Taking the why comment “start listening for

incoming connections” in Case 2 as another example, ISA pays

more attention to the middle part of the method start() and

less attention to irrelevant tokens. The visualization of the two

attention variants shows that ISA can enable the attention more

concentrated on the most contributive tokens or statements in

the source code based on the given intent.

B. Threats to Validity

The first threat to validity is the assumption that DOME

can retrieve a similar comment in the retrieval corpus. It

is limited by two aspects: (1) The retrieval model is not

powerful enough to find similar comments (2) Very similar

comments do not exist in the retrieval corpus. To mitigate this

threat, first, DOME employs the SOTA retrieve model DPR

[3] that has a better performance than the traditional term-

based methods. Second, DOME introduces a gated fusion

layer to dynamically decide whether to use the semantic

features from the retrieved exemplar. Thus, even though the

dissimilar exemplar is retrieved, DOME still can guarantee its

performance is not affected.

The second threat to validity is the datasets we use. We

only evaluate DOME on two Java datasets. Although Java

may not be representative of all programming languages, the

experimental datasets are large and safe enough to show

777

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 09,2023 at 10:52:20 UTC from IEEE Xplore. Restrictions apply.

the effectiveness of our model. Furthermore, DOME uses

language-agnostic features that can be easily extracted from

any programming language. Therefore, we believe that our

approach has good generalizability, and can perform well on

the datasets of other programming languages as well, such as

Python and C#.

The third threat relates to the suitability of evaluation

metrics. First, recent researchers have raised concern over the

use of BLEU, warning the community that the way BLEU is

used and interpreted can significantly affect its reliability. To

mitigate that threat, we also adopt other metrics, i.e., ROUGE-

L, and METEOR when evaluating performance. Besides, we

perform a human evaluation to further assess the quality

of comments generated by DOME in terms of accuracy,

adequacy, and naturalness, and whether DOME can meet the

needs of developers in real-world usage scenarios.

VIII. RELATED WORK

A. Automatic Comment Generation

The automatic comment generation task now is a rapidly-

growing research topic in the community of software engineer-

ing and natural language processing. Early studies typically

utilize template-based approaches [45]–[47] and information

retrieval (IR) based approaches [48]–[55] to generate com-

ments. Recently, many learning-based methods have been

proposed, which train the neural models from a large-scale

code-comment corpus to automatically generate comments

[5], [11]–[13], [32], [39], [44], [56]–[61]. Iyer et al. [56]

first treated the comment generation task as an end-to-end

translation problem and introduced NMT techniques into code

comment generation. Zhang et al. [11] proposed a seq2seq

approach that retrieved two similar code snippets for a given

code to improve the quality of the generated comment. Li

et al. [12] treated the comment of the similar code retrieved

from a parallel corpus as a prototype. They proposed a seq2seq

network to update the prototype and generate comments. Fur-

ther, Tang et al. [39] proposed AST-Trans which exploits two

types of node relationships in the AST: ancestor-descendant

and sibling relationships. AST-Trans adopts the tree-structure

attention to learn this structure information, thereby generating

high-quality comments.

Although existing research has achieved promising results in

comment generation task, they only focus on creating a general

description of functionality for a given code snippet without

considering developer intentions, which may have limitations

in practical usage. Our work aims to bridge the gap and defines

a developer-intent driven comment generation task that can

generate intent-aware comments for the same source code with

different intents.

B. Controllable Text Generation

On the basis of traditional text generation, controllable

text generation makes the output text more personalized or

standardized by introducing the control element, such as text

style or key information. This technology has broad appli-

cation prospects in NLP, such as attribute-based generation,

Data Augmentation, and format control [62]. Hu et al. [63]

proposed a framework based on VAEs, which can generate

sentences according to the language attributes, such as sen-

timent and tenses. Zhou et al. [64] used a trained emotion

classifier to label the data. According to different emotion

categories, the model will generate responses with different

emotions. Xu et al. [65] proposed a framework composed of a

keyword predictor, knowledge retriever, and knowledge ranker,

etc., which combines with an external knowledge database to

control the story generation. Keskar et al. [66] released a large

conditional transformer language model named CTRL, whose

output text is controlled by the given style, content, and task-

specific behavior.

Our study is different from the previous work as we focus on

leveraging controllable text generation techniques to improve

the comment generation task. To the best of our knowledge,

this is the first work that treats the comment generation task

as a one-to-many generation task, and utilizes the intent to

control the content and style of the generated comments.

IX. CONCLUSION

In this work, we focus on solving the developer-intent

driven comment generation task, which requires the model to

generate intent-aware comments given the same source code

and different intents of developers. To solve this challenging

task, we propose a novel method, named DOME, which

first incorporates developer intents in comment generation

and can create a comment that is coherent with the given

intent. Specifically, DOME first utilizes the DPR model to

retrieve the most similar comment as the exemplar. Then,

it inputs the source code and the retrieved exemplar into

two encoders to encode them into representation sequences

respectively. Next, it utilizes intent-guided selective attention

to explicitly select intent-relevant information, and removes

irrelevant noise from the source code. Finally, the semantic

features of the code and examples are fused to generate the

final comment. Furthermore, since training and evaluating

DOME require a large volume of labeled comment-intent

data, we developed an automated comment-intent labeling

tool COIN that can be used to construct high-quality intent-

annotated code comment datasets. We evaluate DOME on two

real-world Java datasets, and the experimental results show

that our approach outperforms the state-of-the-art baselines.

A human evaluation also confirms the significant potential of

applying DOME in practical usage, enabling developers to

comment code effectively according to their own needs.

ACKNOWLEDGMENTS

We sincerely appreciate anonymous reviewers for their

constructive and insightful suggestions for improving this

manuscript. This work is supported by the National Nat-

ural Science Foundation of China Grant No.62272445,

No.62232016, and No.62072442, and Youth Innovation Pro-

motion Association Chinese Academy of Sciences.

778

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 09,2023 at 10:52:20 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Q. Chen, X. Xia, H. Hu, D. Lo, and S. Li, “Why My Code Sum-
marization Model Does Not Work: Code Comment Improvement with
Category Prediction,” ACM Trans. Softw. Eng. Methodol., vol. 30, no. 2,
pp. 25:1–25:29, 2021.

[2] J. Zhai, X. Xu, Y. Shi, G. Tao, M. Pan, S. Ma, L. Xu, W. Zhang,
L. Tan, and X. Zhang, “CPC: Automatically Classifying and Propagating
Natural Language Comments via Program Analysis,” in ICSE ’20: 42nd
International Conference on Software Engineering. ACM, 2020, pp.
1359–1371.

[3] V. Karpukhin, B. Oguz, S. Min, P. S. H. Lewis, L. Wu, S. Edunov,
D. Chen, and W. Yih, “Dense Passage Retrieval for Open-Domain Ques-
tion Answering,” in Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2020. Association
for Computational Linguistics, 2020, pp. 6769–6781.

[4] A. LeClair, S. Jiang, and C. McMillan, “A Neural Model for Gener-
ating Natural Language Summaries of Program Subroutines,” in 2019
IEEE/ACM 41st International Conference on Software Engineering
(ICSE), pp. 795–806.

[5] X. Hu, G. Li, X. Xia, D. Lo, S. Lu, and Z. Jin, “Summarizing Source
Code with Transferred API Knowledge,” in Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, IJCAI
2018, 2018, pp. 2269–2275.

[6] “Project Website,” https://github.com/ICSE-DOME/DOME, 2022.

[7] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is All You Need,” in Advances
in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, 2017, pp. 5998–6008.

[8] Q. Wang, B. Li, T. Xiao, J. Zhu, C. Li, D. F. Wong, and L. S. Chao,
“Learning Deep Transformer Models for Machine Translation,” in Pro-
ceedings of the 57th Conference of the Association for Computational
Linguistics, ACL 2019. Association for Computational Linguistics,
2019, pp. 1810–1822.

[9] Y. Liu and M. Lapata, “Text Summarization with Pretrained Encoders,”
in Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on
Natural Language Processing, EMNLP-IJCNLP 2019. Association for
Computational Linguistics, 2019, pp. 3728–3738.

[10] L. J. Ba, J. R. Kiros, and G. E. Hinton, “Layer Normalization,” CoRR,
vol. abs/1607.06450, 2016.

[11] J. Zhang, X. Wang, H. Zhang, H. Sun, and X. Liu, “Retrieval-based
Neural Source Code Summarization,” in ICSE ’20: 42nd International
Conference on Software Engineering. ACM, 2020, pp. 1385–1397.

[12] J. Li, Y. Li, G. Li, X. Hu, X. Xia, and Z. Jin, “EditSum: A Retrieve-and-
Edit Framework for Source Code Summarization,” in 36th IEEE/ACM
International Conference on Automated Software Engineering, ASE
2021. IEEE, 2021, pp. 155–166.

[13] B. Wei, Y. Li, G. Li, X. Xia, and Z. Jin, “Retrieve and Refine: Exemplar-
based Neural Comment Generation,” in 35th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2020, 2020, pp.
349–360.

[14] K. S. Jones, “A Statistical Interpretation of Term Specificity and Its
Application in Retrieval,” J. Documentation, vol. 60, no. 5, pp. 493–
502, 1972.

[15] S. E. Robertson and H. Zaragoza, “The Probabilistic Relevance Frame-
work: BM25 and Beyond,” Found. Trends Inf. Retr., vol. 3, no. 4, pp.
333–389, 2009.

[16] S. Liu, Y. Chen, X. Xie, J. K. Siow, and Y. Liu, “Retrieval-Augmented
Generation for Code Summarization via Hybrid GNN,” in 9th Interna-
tional Conference on Learning Representations, ICLR 2021. OpenRe-
view.net, 2021.

[17] M. R. Parvez, W. U. Ahmad, S. Chakraborty, B. Ray, and K. Chang,
“Retrieval Augmented Code Generation and Summarization,” in Find-
ings of the Association for Computational Linguistics: EMNLP 2021,
Virtual Event / Punta Cana, Dominican Republic. Association for
Computational Linguistics, 2021, pp. 2719–2734.

[18] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A
Novel Neural Source Code Representation Based on Abstract Syntax
Tree,” in Proceedings of the 41st International Conference on Software
Engineering, ICSE 2019. IEEE / ACM, 2019, pp. 783–794.

[19] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[20] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen,
“A Statistical Semantic Language Model for Source Code,” in Joint
Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering,
ESEC/FSE’13. ACM, 2013, pp. 532–542.

[21] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang, and M. Zhou, “CodeBERT: A Pre-Trained Model for
Programming and Natural Languages,” 2020.

[22] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019. Association for Computational
Linguistics, 2019, pp. 4171–4186.

[23] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan,
A. Svyatkovskiy, S. Fu, M. Tufano, S. K. Deng, C. B. Clement, D. Drain,
N. Sundaresan, J. Yin, D. Jiang, and M. Zhou, “GraphCodeBERT: Pre-
training Code Representations with Data Flow,” in 9th International
Conference on Learning Representations, ICLR 2021. OpenReview.net,
2021.

[24] Y. Wang, W. Wang, S. R. Joty, and S. C. H. Hoi, “CodeT5: Identifier-
aware Unified Pre-trained Encoder-Decoder Models for Code Under-
standing and Generation,” in Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2021.
Association for Computational Linguistics, 2021, pp. 8696–8708.

[25] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and
T. Liu, “LightGBM: A Highly Efficient Gradient Boosting Decision
Tree,” in Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, 2017, pp.
3146–3154.

[26] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification
and Regression Trees. Wadsworth, 1984.

[27] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
Learning Applied to Document Recognition,” Proc. IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[28] P. Zhou, W. Shi, J. Tian, Z. Qi, B. Li, H. Hao, and B. Xu, “Attention-
Based Bidirectional Long Short-Term Memory Networks for Relation
Classification,” in Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics, ACL 2016. The Association
for Computer Linguistics, 2016.

[29] W. U. Ahmad, S. Chakraborty, B. Ray, and K. Chang, “A Transformer-
based Approach for Source Code Summarization,” in Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics,
ACL 2020, pp. 4998–5007.

[30] J. Cheng, I. Fostiropoulos, and B. W. Boehm, “GN-Transformer: Fusing
Sequence and Graph Representation for Improved Code Summariza-
tion,” CoRR, vol. abs/2111.08874, 2021.

[31] S. Gao, C. Gao, Y. He, J. Zeng, L. Y. Nie, and X. Xia, “Code
Structure Guided Transformer for Source Code Summarization,” CoRR,
vol. abs/2104.09340, 2021.

[32] A. LeClair, A. Bansal, and C. McMillan, “Ensemble Models for Neural
Source Code Summarization of Subroutines,” in IEEE International
Conference on Software Maintenance and Evolution, ICSME 2021.
IEEE, 2021, pp. 286–297.

[33] E. Shi, Y. Wang, L. Du, H. Zhang, S. Han, D. Zhang, and H. Sun,
“CAST: Enhancing Code Summarization with Hierarchical Splitting and
Reconstruction of Abstract Syntax Trees,” in Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing,
EMNLP 2021, pp. 4053–4062.

[34] “Original Funcom Dataset,” http://www.ics.uci.edu/lopes/datasets/,
2010.

[35] L. Shi, F. Mu, X. Chen, S. Wang, J. Wang, Y. Yang, G. Li, X. Xia,
and Q. Wang, “Are We Building on the Rock? On the Impor-
tance of Data Preprocessing for Code Summarization,” arXiv preprint
arXiv:2207.05579, 2022.

[36] K. Papineni, S. Roukos, T. Ward, and W. Zhu, “Bleu: A Method for
Automatic Evaluation of Machine Translation,” in Proceedings of the
40th Annual Meeting of the Association for Computational Linguistics.
ACL, 2002, pp. 311–318.

[37] C.-Y. Lin, “ROUGE: A Package for Automatic Evaluation of Sum-
maries,” in Text summarization branches out, 2004, pp. 74–81.

[38] S. Banerjee and A. Lavie, “METEOR: An Automatic Metric for MT
Evaluation with Improved Correlation with Human Judgments,” in
Proceedings of the Workshop on Intrinsic and Extrinsic Evaluation

779

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 09,2023 at 10:52:20 UTC from IEEE Xplore. Restrictions apply.

Measures for Machine Translation and/or Summarization@ACL 2005.
Association for Computational Linguistics, 2005, pp. 65–72.

[39] Z. Tang, X. Shen, C. Li, J. Ge, L. Huang, Z. Zhu, and B. Luo, “AST-
Trans: Code Summarization with Efficient Tree-Structured Attention,” in
44th IEEE/ACM 44th International Conference on Software Engineer-
ing, ICSE 2022. ACM, 2022, pp. 150–162.

[40] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
in 3rd International Conference on Learning Representations, ICLR
2015, 2015.

[41] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Improving Neural Networks by Preventing Co-
adaptation of Feature Detectors,” CoRR, vol. abs/1207.0580, 2012.

[42] S. Wiseman and A. M. Rush, “Sequence-to-Sequence Learning as
Beam-Search Optimization,” in Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2016.
The Association for Computational Linguistics, 2016, pp. 1296–1306.

[43] “Pytorch Framework,” https://pytorch.org/, 2016.
[44] Y. Wan, Z. Zhao, M. Yang, G. Xu, H. Ying, J. Wu, and P. S. Yu,

“Improving Automatic Source Code Summarization via Deep Reinforce-
ment Learning,” in Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, ASE 2018, 2018, pp.
397–407.

[45] G. Sridhara, E. Hill, D. Muppaneni, L. L. Pollock, and K. Vijay-
Shanker, “Towards Automatically Generating Summary Comments for
Java Methods,” in ASE 2010, 25th IEEE/ACM International Conference
on Automated Software Engineering. ACM, 2010, pp. 43–52.

[46] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. L. Pollock, and
K. Vijay-Shanker, “Automatic Generation of Natural Language Sum-
maries for Java Classes,” in IEEE 21st International Conference on
Program Comprehension, ICPC 2013. IEEE Computer Society, 2013,
pp. 23–32.

[47] P. W. McBurney and C. McMillan, “Automatic Source Code Summariza-
tion of Context for Java Methods,” IEEE Trans. Software Eng., vol. 42,
no. 2, pp. 103–119, 2016.

[48] S. Haiduc, J. Aponte, and A. Marcus, “Supporting Program Compre-
hension with Source Code Summarization,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume
2, ICSE 2010. ACM, 2010, pp. 223–226.

[49] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the Use of
Automated Text Summarization Techniques for Summarizing Source
Code,” in 17th Working Conference on Reverse Engineering, WCRE
2010. IEEE Computer Society, 2010, pp. 35–44.

[50] B. P. Eddy, J. A. Robinson, N. A. Kraft, and J. C. Carver, “Evaluating
Source Code Summarization Techniques: Replication and Expansion,” in
IEEE 21st International Conference on Program Comprehension, ICPC
2013. IEEE Computer Society, 2013, pp. 13–22.

[51] E. Wong, J. Yang, and L. Tan, “AutoComment: Mining Question
and Answer Sites for Automatic Comment Generation,” in 2013 28th
IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE 2013. IEEE, 2013, pp. 562–567.

[58] X. Liu, D. Wang, A. Wang, Y. Hou, and L. Wu, “HAConvGNN:
Hierarchical Attention Based Convolutional Graph Neural Network for
Code Documentation Generation in Jupyter Notebooks,” arXiv preprint
arXiv:2104.01002, 2021.

[52] E. Wong, T. Liu, and L. Tan, “CloCom: Mining Existing Source
Code for Automatic Comment Generation,” in 22nd IEEE International
Conference on Software Analysis, Evolution, and Reengineering, SANER
2015. IEEE Computer Society, 2015, pp. 380–389.

[53] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and
R. A. Harshman, “Indexing by Latent Semantic Analysis,” J. Am. Soc.
Inf. Sci., vol. 41, no. 6, pp. 391–407, 1990.

[54] G. Salton, A. Wong, and C. Yang, “A Vector Space Model for Automatic
Indexing,” Commun. ACM, vol. 18, no. 11, pp. 613–620, 1975.

[55] Z. Liu, X. Xia, A. E. Hassan, D. Lo, Z. Xing, and X. Wang, “Neural-
machine-translation-based Commit Message Generation: How Far are
We?” in Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, 2018, pp. 373–384.

[56] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing
Source Code using a Neural Attention Model,” in Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics,
ACL 2016. The Association for Computer Linguistics, 2016.

[57] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep Code Comment
Generation,” in Proceedings of the 26th Conference on Program Com-
prehension, ICPC 2018. ACM, 2018, pp. 200–210.

[59] W. Wang, Y. Zhang, Y. Sui, Y. Wan, Z. Zhao, J. Wu, P. S. Yu, and G. Xu,
“Reinforcement-Learning-Guided Source Code Summarization Using
Hierarchical Attention,” IEEE Transactions on Software Engineering,
vol. 48, no. 1, pp. 102–119, 2022.

[60] H. Wang, X. Xia, D. Lo, Q. He, X. Wang, and J. Grundy, “Context-
aware Retrieval-based Deep Commit Message Generation,” ACM Trans.
Softw. Eng. Methodol., vol. 30, no. 4, pp. 56:1–56:30, 2021.

[61] F. Mu, X. Chen, L. Shi, S. Wang, and Q. Wang, “Automatic comment
generation via multi-pass deliberation,” in 37th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2022, Rochester,
MI, USA, October 10-14, 2022. ACM, 2022, pp. 14:1–14:12. [Online].
Available: https://doi.org/10.1145/3551349.3556917

[62] H. Zhang, H. Song, S. Li, M. Zhou, and D. Song, “A Survey of Control-
lable Text Generation Using Transformer-based Pre-trained Language
Models,” arXiv preprint arXiv:2201.05337, 2022.

[63] Z. Hu, Z. Yang, X. Liang, R. Salakhutdinov, and E. P. Xing, “Toward
Controlled Generation of Text,” in Proceedings of the 34th International
Conference on Machine Learning, ser. Proceedings of Machine Learning
Research, vol. 70. PMLR, 06–11 Aug 2017, pp. 1587–1596.

[64] H. Zhou, M. Huang, T. Zhang, X. Zhu, and B. Liu, “Emotional
Chatting Machine: Emotional Conversation Generation with Internal and
External Memory,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 32, no. 1, 2018.

[65] P. Xu, M. Patwary, M. Shoeybi, R. Puri, P. Fung, A. Anandkumar, and
B. Catanzaro, “MEGATRON-CNTRL: Controllable Story Generation
with External Knowledge Using Large-scale Language Models,” arXiv
preprint arXiv:2010.00840, 2020.

[66] N. S. Keskar, B. McCann, L. R. Varshney, C. Xiong, and R. Socher,
“CTRL: A Conditional Transformer Language Model for Controllable
Generation,” CoRR, vol. abs/1909.05858, 2019.

780

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 09,2023 at 10:52:20 UTC from IEEE Xplore. Restrictions apply.

