
Automated Extraction of Requirement Entities by
Leveraging LSTM-CRF and Transfer Learning

Mingyang Li∗‡, Ye Yang¶, Lin Shi ∗‡, Qing Wang∗†‡1, Jun Hu ∗‡,
Xinhua Peng§, Weimin Liao§ and Guizhen Pi§

∗Laboratory for Internet Software Technologies, Institute of Software Chinese Academy of Sciences, Beijing, China
¶ Stevens Institute of Technology, Hoboken, NJ, USA

†State Key Laboratory of Computer Sciences, Institute of Software Chinese Academy of Sciences, Beijing, China
‡University of Chinese Academy of Sciences, Beijing, China

§China Merchants Bank, Shenzhen, China

Email: mingyang@itechs.iscas.ac.cn, yyang4@stevens.edu, {shilin, wq, hujun}@iscas.ac.cn

{joeyxhpeng, liaowm, p98119}@cmbchina.com

Abstract—Requirement entities, “explicit specification of con-
cepts that define the primary function objects”, play an important
role in requirement analysis for software development and
maintenance. It is a labor-intensive activity to extract require-
ment entities from textual requirements, which is typically done
manually. A few existing studies propose automated methods to
support key requirement concept extraction. However, they face
two main challenges: lack of domain-specific natural language
processing techniques and expensive labeling effort. To address
the challenges, this study presents a novel approach named
RENE, which employs LSTM-CRF model for requirement entity
extraction and introduces the general knowledge to reduce the
demands for labeled data. It consists of four phases: 1) Model
construction, where RENE builds LSTM-CRF model and an
isomorphic LSTM language model for transfer learning; 2)
LSTM language model training, where RENE captures general
knowledge and adapt to requirement context; 3) LSTM-CRF
training, where RENE trains the LSTM-CRF model with the
transferred layers; 4) Requirement entity extraction, where
RENE applies the trained LSTM-CRF model to a new-coming
requirement, and automatically extracts its requirement entities.
RENE is evaluated using two methods: evaluation on historical
dataset and user study. The evaluation on the historical dataset
shows that RENE could achieve 79% precision, 81% recall, and
80% F1. The evaluation results from the user study also suggest
that RENE could produce more accurate and comprehensive
requirement entities, compared with those produced by engineers.

Index Terms—Requirement Entity, Sequence Tagging, LSTM-
CRF, Transfer Learning

I. INTRODUCTION

Successful software products require continuous changes

triggered by user requirements. If inappropriately managed,

chaotic requirements may lead to ambiguous or duplicate fea-

tures, lack of visibility in requirement dependency, poor scope

and cost estimation of software projects. To address these

issues, an effective mechanism is to establish and maintain

a function dictionary which characterizes the key functional

objects of the software system. In general, such functional

objects can be represented as requirement entities, as “explicit

1The corresponding author

specifications of real-world objects in the requirement con-

text”, and define the scope and functions to be implemented

or enhanced in the software [1]–[4]. Additional benefits of

requirement entities are reported to support new requirements

identification [5], requirement change analysis [6], and effort

estimation based on requirement changes [7]. However, in

practice, the activity to extract requirement entities from

textual requirements is generally done in a manual manner,

due to lack of automated support. This labor-intensive manual

process frequently leads to a redundant, missing, and chaotic

list of requirement entities.

In essence, the problem of automated requirement term

extraction is similar to the classical term extraction problem

in the machine learning domain. There are a plethora of

machine learning-based approaches to address the general

term extraction problem [8]–[10], which could be potentially

applicable to the software requirement domain. However, these

approaches rely on a large volume of labeled resources to train

a promising model. The labeling process is very expensive, let

alone the ubiquitous difficulty in getting access to industrial

requirements [11], [12]. Additionally, a few studies construct

and apply heuristic linguistic rules, to parsed requirement

corpus leveraging Natural Language Processing (NLP) tech-

niques. Examples of such methods are part-of-speech patterns,

grammar rule and text chunking [13]–[16]. Unfortunately, such

NLP techniques are often trained on the general corpora which

mainly contain a common vocabulary of terms, and errors

might be produced when dealing with requirements with the

obscure business terms due to the out-of-vocabulary problem,

leading to poor performance under domain-specific context

[17]. Therefore, there is a lack of studies on domain-specific

NLP techniques.

In these existing studies, several different but related terms

are named, such as general named entities [8], [9] and

glossary terms [10], [13]–[16]. For example, general named

entities refer to all general concept contained in a textual

document [18], [19]. Glossary terms, defined as “salient terms

in documents” [14], aim to help stakeholders get familiar with

208

2020 IEEE International Conference on Software Maintenance and Evolution (ICSME)

2576-3148/20/$31.00 ©2020 IEEE
DOI 10.1109/ICSME46990.2020.00029

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 10,2023 at 13:46:27 UTC from IEEE Xplore. Restrictions apply.

business knowledge the technical terminologies in a domain.

It is observed that there is a lack of clear definition for

these related terms, and existing definitions tend to be very

inclusive, i.e. not only including domain-specific terms but

also general terms loosely related to the requirement domain.

When it comes to requirements-based software measurement

and estimation, the inclusion of trivial, loosely relevant general

terms could potentially lead to over-estimation [1], [2].

Therefore, in this study, we consider requirement entities

which are context-sensitive, domain-specific, functionality-

oriented terms, to support more effective requirement man-

agement and accurate estimation. Intuitively, this should be a

subset of general named entities and glossary terms. To support

effective requirement entity extraction, we propose a novel ap-

proach named RENE (Requirement ENtity Extraction), for au-

tomatic requirement entity extraction. RENE employs LSTM-

CRF model and transfer learning which takes requirement

entity extraction as a sequence tagging task and introduces

the general knowledge to reduce the demands for labeled data

It consists of four phases: 1) Model construction, where RENE

builds LSTM-CRF model and an isomorphic LSTM language

model for transfer learning; 2) LSTM language model training

to capture general knowledge and adapt to specific require-

ments; 3) LSTM-CRF training to train the LSTM-CRF model

with the transferred layers; 4) Requirement entity extraction,

where RENE applies the trained LSTM-CRF model to a new-

coming requirement, and automatically extract its requirement

entities. RENE is evaluated on 3,586 requirements from 20

on-going software systems in a financial company, compared

with three state-of-art baselines. The evaluation results show

that RENE could achieve 81% precision, 79% recall, and

80% F1 on average, and significantly outperform the baseline

approaches. The evaluation results also indicate that train-

ing steps in RENE could contribute to the performance.

The sample size sensitiveness evaluation shows that RENE

could achieve promising performance even using very limited

training data. Besides, the evaluation results from applying

RENE to 11 ongoing projects show that RENE could achieve

promising performance and outperform the engineer’s manual

extraction in practices.

The contributions of this paper are as follows: 1) The

integration of LSTM-CRF and transfer learning to balance

the dual learning needs of general knowledge as well as

domain adaptation; 2) The construction and training of RENE

to support automated extraction of requirement entities, over-

coming existing challenges; 3) The evaluation on industrial

requirement dataset from the on-going software projects, with

promising results;

The remainder of the paper is organized as follows. Section

II introduces the background. Section III elaborates the ap-

proach. Section IV presents the experiment design. Section V

describes the results. Section VI discusses the benefits, learned

lessons, and threats to validity. Section VII introduces the

related work. Section VIII concludes our work.

II. BACKGROUND

A. Sequence Tagging and LSTM-CRF Model

Sequence tagging is a widely-used technique which is to

predict the tag sequence given the input sequence [20] Let

X = (x1, x2, x3, x4, ..., xn) be the input sequence where

xi is the element in the input sequence X . Sequence tag-

ging task aims at finding the most optimal label sequence

Y = (y1, y2, y3, y4..., yn) given X where yi is the label given

to corresponding xi. Considering that the natural language

is naturally sequence of words, sequence tagging has been

popularly-used in many NLP tasks, such as Part-of-Speech

tagging, text chunking, and named entity recognition, etc.

[20], [21]. The sequence tagging task could be solved with

many machine learning algorithms such as Maximum Entropy

Model [22], Hidden Markov Model [23], and Conditional

Random Fields (CRF) [20].

Fig. 1. The LSTM-CRF Model

LSTM-CRF model a kind of sequence tagging approach,

which combines neural network and CRF algorithm. It is

firstly proposed by Huang et al. [24], and has achieved the

state-of-the-art results on many NLP tasks [25], [26]. The

structure of the LSTM-CRF model is shown in Figure 1.

There are three layers in the LSTM-CRF model, the first

two layers, i.e. the embedding layer and the LSTM layer,

responsible for encoding inputs into hidden representation,

and the last CRF layer is to decode the hidden representation

into label sequence. One of the advantages of the embedding

layer and LSTM layer is the ability to encode sophisticated

semantic and contextual information in the text. Thus, LSTM-

CRF model typically achieves better performance than a single

CRF model with hand-crafted features. However, LSTM-CRF

model requires a large volume of labeled data for training,

which limits its application to domains with the shortage of

labeled data.

B. Language Model

Language model (LM) aims to capture regularities of natural

language [27]. It is used to generate the probability distribution

of various linguistic units, such as words, sentences, and whole

documents [28]. Given the word sequence [x1, x2, ..., xm], it

209

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 10,2023 at 13:46:27 UTC from IEEE Xplore. Restrictions apply.

computes the probability of the sequence by modelling the

probability of word xk given the history (x1, x2, ..., xk−1):

p (x1, x2, ..., xm) = p(x1)

m∏

k=1

(xk|x1, ..., xk−1) (1)

Language model could be trained using an unsupervised cor-

pus. The trained language model could capture the linguistic

properties such as grammatical structure, semantic and context

information, and other knowledge.

C. Transfer Learning

Transfer learning is a research problem in machine learning

that focuses on storing knowledge gained while solving one

problem and applying it to a different but related problem

[29]. Given the source learning task Ts and target learning

task Tt, the Ts shares the common or related knowledge with

Tt. Transfer learning aims to help improve the performance

of Tt with the help of the knowledge in Ts. For NLP

tasks, supervised deep learning has become the most popular

technique [30]. However, supervised deep learning typically

requires a large number of labeled instances to fit numerous

parameters in the neural network. Transfer learning could

mitigate the situation. With the help of the general knowledge

learned from Ts, only a few parameters in Tt need to be

learned from small-sized datasets. To avoid the extra labeled

cost, unsupervised tasks are usually set as the source tasks. In

our study, we set the source task as the language model, and

target task as the requirement entity extraction. We consider

that the linguistic properties learned by the language model

could boost the performance of the target requirement entity

extraction task.

III. APPROACH

Figure 2 illustrates the overview of our approach, RENE. It

consists of four phases: 1) Model construction, where RENE

builds LSTM-CRF model and an isomorphic LSTM language

model for transfer learning; 2) LSTM language model to

capture general knowledge and adapt to specific requirements;

3) LSTM-CRF training to train the LSTM-CRF model with

the transferred layers; 4) Requirement entity extraction, where

RENE applies the trained LSTM-CRF model to a new-coming

requirement, and automatically extract its requirement entities.

Following introduces the details of the four phases.

A. LSTM Language Model Construction

RENE treats requirement entity extraction as a sequence

tagging task and employs the LSTM-CRF model (the structure

is shown in Figure 1) to encode the semantic and contextual

information of requirement entities. In order to alleviate the

data deficiency problem, RENE adopts an LM-based transfer

learning strategy which sets the source task as the language

model and constructs an isomorphic LSTM language model

to capture the general knowledge for knowledge transfer.

There are three layers in the LSTM language model, i.e.,

an embedding layer, an LSTM layer, and a softmax layer. For

each sentence, the LSTM language takes the corresponding

word sequence as the input. The embedding layer is used to

embed each word into a continuous space where the semanti-

cally similar words are placed close to each other, and LSTM

layer is to encode the contextual information for each word.

After that, the the LSTM layer returns a hidden representation

[h1, h2, ..., hm]. Then, the hidden representation is normalized

into the probability distribution of the input sentence using the

softmax function [31].

B. LSTM Language Model Training
In this phase, the LSTM language model is trained to

capture the general knowledge and adapt to the specific

requirements domain. Following introduces the two steps in

the phrase.
1) Pre-training the LSTM language model with general

corpus: This step is implemented by pre-training the LSTM

language model with the easily-collected general corpus. Then,

we build the training instances from the general corpus.

The general corpus is pre-processed respectively following

two steps: (1) splitting issue description text into individual

sentences; and (2) applying standard data cleaning pipeline

including special character removal, tokenization, and lower-

case conversion to each sentence. After data pre-processing,

each sentence is converted into a word sequence [w1, w2, ...,

wn], where wi is the each word in the sentence, and n is the

length of the sentence. Then, RENE models the distribution

of each sentence. The input for the LSTM language model is

set as [< s >, w1, .., Wm−1], and the output is set as [w1,

w2, .., wm] where < s > is a placeholder to align the input

and output. The basic idea is to predict the words from left-

to-right, to capture the statistical regularity within the general

corpus. The pair ([< s >, w1, .., wm−1], [w1, w2, .., wm]) is

regarded as a training instance.
With the training instances, RENE pre-trains the LSTM lan-

guage model in an iterative manner. During an iteration, all the

instances are fed into the LSTM language model. For one time,

an instance is sent into the LSTM language model. Through

the embedding layer, the LSTM layer, and the softmax layer,

the LSTM language model produces the probability sequence

[P (x1), P (x2|x1), ..., P (xm|x1x2...xm−1)]. Then, the loss of

the instance is defined as Cross-Entropy [32] in the following

equation:

Losslm =
1

m

m∑

j=1

−xj · logP (xj |x1x2...xj−1) (2)

where xj is the output for the current instance, and

P (xj |x1x2...xj−1) is the probability of predicting xj given

the previous sequence [x1, x2, ..., xj−1]. With the loss, each

model parameter is updated using the following equation:

θi := θi − η
∂

∂θi
Losslm (3)

where θi is each model parameter in the embedding layer and

the LSTM layer, the ∂
∂θi

is the operator of Gradient for the

parameter θi, and η is the learning rate which could control the

degree of parameter update. The iterative process terminates

until Losslm converges.

210

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 10,2023 at 13:46:27 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. The Approach Overview

2) Fine-tuning the LSTM language Model with unlabeled
requirements: This step is to introduce a small amount of

unlabeled data to fine-tune the LSTM language model to fill

the linguistic gap between the general corpus and the specific

domain. This step is similar to the previous pre-training step

but uses unlabeled requirements as input instead. Specifically,

RENE builds the LM instances from the unlabeled require-

ments, sends all the instances into the pre-trained LSTM

language model. The training is also conducted iteratively. In

each iteration, the loss for each instance is calculated by Cross-

Entropy of the input word sequence and output probability

sequence using the Equation 2, and model parameters are

updated using the Equation 3. The difference is that RENE

sets a smaller learning rate η in this step. The assumption

is that, after pre-training the LSTM language model, the

LSTM language model has captured the general knowledge

from the general corpus. Requirements adaptation could be

implemented with a smaller parameter update.

C. LSTM-CRF Model Training

First, RENE builds the sequence tagging instances from

the labeled requirements. Given a requirement R and corre-

sponding requirement entities E = [RE1, RE2, ..., REn],

all the textual contents in R are also split into sentences and

processed by the standard data cleaning pipeline respectively.

At the same time, REi is also processed by the data cleaning

pipeline. After that, each sentence is converted into a word

sequence Ws = [w1, w2, ..., wm], and each REi is converted

into a word sequence WRE which is the sub-sequence of Ws.

For each WRE , RENE determine its location in Ws by sub-

sequence matching. Then, RENE gives a label yi to each word

wi, which indicates the location of REi. The yi in represented

in the BIO format [33], [34]:

• B-label (Beginning): The word is the beginning of the

requirement entity.

• I-label (Inside): The word is inside requirement entity but

not the first within the requirement entity.

• O-label (Outside): The word is outside the requirement

entity.

Finally, each word sequence and corresponding label sequence

is used as an instance.

After pre-training and fine-tuning the LSTM language

model, RENE transfers the embedding layer and LSTM layer

in the LSTM language model to the LSTM-CRF model,

and only trains the CRF layer using the sequence tagging

instance built from the labeled requirements. Similarly, this

step is conducted iteratively. In each iteration, all the sequence

tagging instances are sent into the LSTM-CRF network. For

each time, LSTM-CRF network receives the input sequence

[w1, w2, ..., wm]. Through the embedding layer, the LSTM

layer and the CRF layer, the network produces the predicted

label sequence [ŷ1, ŷ2, ..., ŷm], where ŷm is one of three labels

in the BIO format. The loss is defined as Cross Entropy:

Lossst =
1

m

m∑

j=1

−yj · log p(ŷj) (4)

where yj is the ground truth label and p(ŷj) is the probability

of predicting the label as yj . The each parameters in the CRF

layer is updated using the following equation:

θi := θi − η
∂

∂θi
Lossst (5)

211

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 10,2023 at 13:46:27 UTC from IEEE Xplore. Restrictions apply.

The iteration stops until the loss converges.

D. Requirement entity extraction

When a new requirement arrives, the trained LSTM-CRF

receives its sentence representation [x1, x2, ..., xm], and

returns a label sequence [y1, y2, ..., ym], where yi (in the BIO
format) is the label given to xi. RENE forward scans the label

sequence. Using the labels “B” and “I”, RENE determines

the location of each requirement entity in the word sequence.

For example, given a sentence “I want to add the system
reminder service on my personal page”, the word sequence

and corresponding label sequence are shown in the require-

ment entity extraction phrase in Figure 2. The “Sequence”

row corresponds to the word sequence of the sentence and the

“Label” row represents the corresponding label sequence. In

this example, the labels “B” and “I” correspond to the words

“system”, “reminder” and “service”, and the next sequence

label “O” represents the corresponding word no longer belongs

to the current requirement entity. Therefore, the identified

requirement entity will be “system reminder service” from the

word sequence. Following this, all requirement entities could

be extracted after parsing through the labeled sequence.

IV. EXPERIMENT DESIGN

A. Research Questions

The evaluation addresses the following four research ques-

tions:

RQ1: (Baseline Comparison) How does the performance
of RENE compare with the state-of-art baselines? To eval-

uate the effectiveness of RENE, we evaluate its performance

and compare it with three state-of-the-art baselines.

RQ2: (Transfer Learning Evaluation) To what extent
does each training step contribute to RENE? There are

mainly three training steps in RENE, i.e., pre-training the

LSTM language mode, fine-tuning the LSTM language model,

and train the LSTM-CRF model. We conduct experiments

under different combinations of these training steps, to inves-

tigate to what extent each step contributes to the performance

of RENE.

RQ3: (Sensitivity Analysis) To what extent is RENE
sensitive to different sample sizes? We train RENE using

different sizes of unlabeled requirements and labeled require-

ments, and evaluate the performances to investigate how many

requirements are required to train an effective LSTM-CRF

model.

RQ4: (Usefulness Analysis) How does RENE work in
real-world application? We conduct a user study to inves-

tigate the usefulness of RENE in practices. we randomly

sample the projects operating on the continuously-evolved

business systems. The requirement entities extracted by RENE

and engineers are manually reviewed by requirement experts

respectively.

B. Subject Datasets

As illustrated in Fig 2, the subject datasets include two

different corpora, i.e. general corpus extracted from Wikipedia

for LSTM pre-training purpose, and domain-specific corpus

from an industry collaborator for LSTM language model fine-

tuning and LSTM-CRF model training purposes. Next, we will

introduce these two datasets in detail.

TABLE I
SUMMARY OF LABELED AND UNLABELED REQUIREMENTS

system
ID business field

labeled
requirement

unlabeled
requirements

requirements requirement
entities requirements

1 Personal Loan 805 534 801
2 Merchant Management 108 146 124
3 Measurement Tool 88 124 72
4 Payment 68 68 60
5 Data Warehouse 64 88 92
6 Cloud Computing 192 208 188
7 Marketing Management 88 96 92
8 Private Bank 869 1053 800
9 Retail 684 782 672

10 Settlement 156 222 153
11 Foreign Trade 84 111 80
12 Charter Business 48 32 59
13 Innovative Product 21 10 23
14 Communation Platform 18 5 21
15 Joint Card 94 24 92
16 Block Chain 42 10 42
17 Intelligent Answering 8 5 8
18 Data Analysis 33 18 33
19 Anti-Fraud 14 28 13
20 Business Analysis 102 46 75

TOTAL - 3,586 3,610 3,500

General corpus. For the general corpus, we choose

Wikipedia as the data source. Wikipedia is an open knowledge

base that covers a large volume of concepts in the real-word,

and each concept contains corresponding textual descriptions.

To build the general corpus, we randomly sample 12,000

articles from Wikimedia1 which is a database periodically

dumping Wikipedia concepts. We parse the 12,000 articles

using an open-source toolkit Wikipedia Extractor2, and obtain

all the textual contents in each concept as the general corpus.

Domain-specific corpus. This domain-specific corpus con-

tains 7,086 requirements across 20 software maintenance

projects obtained from company China Merchants Bank
(CMB), the largest joint-stock commercial bank in China.

CMB’s software systems span across a diverse set of banking

business, such as debit/credit card, wealth, cash, tax payment,

e-billing, etc. Most of CMB’s software systems are continu-

ously maintained and evolved over the past 5 years. The 20

projects were completed from January 2018 to June 2019.

Meanwhile, to support requirement measurement and esti-

mation, CMB has maintained a requirement entity list man-

ually. Typically, the development team is responsible for

extracting and maintaining the entity list, after passing the

review and verification by domain experts. This dual effort is

to ensure the quality of the entity list, avoiding reckless errors

or individual bias from the engineer teams. However, due to

the expensive expert-associated costs, not all requirements will

go through this labeling process. More specifically, in this

study, this domain-specific corpus consists of two subsets:

labeled requirements and unlabeled requirements. The former

contains 3,586 requirements produced following the above

1https://dumps.wikimedia.org/
2https://github.com/attardi/wikiextractor

212

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 10,2023 at 13:46:27 UTC from IEEE Xplore. Restrictions apply.

process. The later contains 3,500 unlabeled requirements. The

details of labeled requirements and unlabeled requirements are

shown in Table I.

C. Experiment Design

1) Effectiveness Analysis: For RQ1, we firstly pre-train and

fine-tune the LSTM language model using all the general cor-

pus and unlabeled requirements respectively, and transfer the

trained embedding layer and LSTM layer to the LSTM-CRF

model. Finally, we randomly divide the labeled requirements

into two parts, i.e., 30% as the training set and remaining 70%

as the test set. The training set is used to train the CRF layer

in the LSTM-CRF network, and the performance is evaluated

on the test set. The last step is repeated 5 times, and the

average is used as the final model’s performance. Meanwhile,

we compare with three baselines to investigate the advantage

of RENE. Mann-Whitney tests are conducted between RENE

and three baselines respectively to test the differences. Next

introduce the baselines.

Baseline 1: AERGT [14]: It is the state-of-the-art approach

to automatically extract glossary terms from requirements.

AERGT is a heuristics-based approach that does not require

the training process and has achieved promising performance

in the Satellites and embedded system domains. Following the

steps introduced in AERGT, we firstly extract the candidate

noun phrases from labeled requirements with the help of an

open-source toolkit NLTK3. Then, we refine the candidates

following the linguistic rules introduced in AERGT.

Baseline 2: Chiu et al.’ approach [9]: It is the supervised

learning-based approach, which achieves promising perfor-

mance for the general named entity extraction task. We make

use of the implementation published on the Github4, and train

the network using the labeled requirements.

Baseline 3: ACDO [35]: It is the semi-supervised learning-

based approach to automatically extract domain-specific terms

from natural-language documents, which aims at the insuf-

ficient labeled data in a specific domain. Following the ap-

proach, we use the labeled requirements as the initial training

samples and train an initial CRF model. After that, we

implement the iterative process introduced in ACDO to expand

training samples from unlabeled requirements and retrain the

CRF model until reaching the stop criteria.

2) Transfer Learning Evaluation : For RQ2, we conduct

the experiments under the different configurations of RENE:

• RENE − LM1 − LM2. We remove the pre-training

and fine-tuning LSTM language model from RENE and

only train all the layers in the LSTM-CRF model with

the labeled requirements. Under this setting, the labeled

requirements are randomly divided into the training set

and test set in the ratio of 3:7. Instead of only training the

CRF layer, all three layers in the LSTM-CRF model will

3http://www.nltk.org/
4https://github.com/kamalkraj/Named-Entity-Recognition-with-

Bidirectional-LSTM-CNNs

be trained with the 30% labeled requirements, and evalu-

ate the performance using the 70% labeled requirements.

This setting is used as the comparison benchmark.

• RENE − LM2. Remove Fine-tuning LSTM language

model from the RENE. Firstly, we train the LSTM

language model using all the general corpus and transfer

its embedding layer and LSTM layer to the LSTM-

CRF model. Then, we also randomly divide the labeled

requirement by the ratio of 3:7. We train the CRF layer

using the 30% labeled requirements and evaluate the per-

formance using the remaining 70% labeled requirements.

• RENE − LM1. We train the LSTM language model

using all the unlabeled requirements, and transfer layers

to the LSTM-CRF model. Then, we only train the CRF

layer using 30% randomly divided labeled requirements,

and evaluate the performance using the remaining 70%

labeled requirements.

• RENE. It is same as the experiment design RQ1.

Under each setting, the experiment is repeated 5 times, and

the average is used as the final performance.

3) Sensitivity Analysis: For RQ3, we train RENE with

different volumes of unlabeled and labeled requirements,

and evaluate corresponding performance. First, we use all

Wikipedia concepts in the general corpus, and 30% randomly

divided labeled requirements to train the LSTM-CRF model.

The performance under different sizes of unlabeled require-

ments is evaluated using the remaining 70% labeled require-

ments. Second, we take the number of Wikipedia concepts

and unlabeled requirements as constant, and randomly sample

K% labeled requirements for training and remaining (100-K)%

labeled requirements for evaluation. We set K as 10, 20, 30,

..., 90. Both experiments are repeated 5 times respectively, and

the average of 5 experiments is used as the final performance.

4) Usefulness Analysis: To answer RQ4, a user study is

designed and conducted in September 2019 to evaluate the

usefulness of RENE in the real-world application. With the

support of our industry collaborator, we apply the RENE in

11 new projects operating on the 20 software systems in CMB,

and compare with results produced following the manual

labeling process, as introduced in Section IV-B. Specifically,

the user study follows four steps: 1) first, we obtain the

new requirements of the 11 projects and apply RENE to

extract the requirement entities automatically; 2) for each

project, our industry collaborator independently collects manu-

ally extracted data from corresponding engineering teams who

perform entity extraction in the real-world scenario; 3) then,

our industry collaborator asks a third-party domain expert to

review and verify these two sets of extraction results; and 4)

finally, the domain expert’s inputs will be used as ground truth,

serving for the usefulness evaluation of the proposed RENE,

as well as for comparing the results extracted manually and

those using RENE.

D. Evaluation Metrics

For all the experiments, we use three commonly-used mea-

surements to evaluate the performance, i.e., Precision, Recall,

213

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 10,2023 at 13:46:27 UTC from IEEE Xplore. Restrictions apply.

F1 [36]. (1) Precision, which refers to the ratio of the number

of correctly extracted requirement entities to the total number

of extracted requirement entities; (2) Recall, which refers to

the ratio of the number of correctly extracted requirement

entities to the total number of requirement entities in the

golden test set; and (3) F1-Score, which is the harmonic mean

of precision and recall.

V. RESULT

A. Baseline Comparison (RQ1)

Fig. 3. The box-plot of the performance

Figure 3 shows the box-plot comparison of RENE with three

baselines. It is clear that RENE not only achieves the highest

performance but also is associated with smaller variation than

the baselines. Specifically, RENE reaches 81% precision, 79%

recall, and 80% F1 on average, and outperforms all three

baselines. The details of average precision, recall, and F1

scores of all four approaches are listed in Table II, along with

the results of the Mann-Whitney Test. The numbers in the

brackets are the differences from those in RENE. The “*”

symbol suffixed with the number indicates that the difference

is significant (at the significance level of 0.05).

TABLE II
SUMMARY OF PERFORMANCE COMPARISON RESULTS

approach precision recall F1
RENE 81% 79% 80%

AERGT 46% (-35%*) 60% (-19%*) 51% (-29%*)
Chiu et al.’ approach 56% (-25%*) 53% (-26%*) 55% (-25%*)

ACDO 64% (-17%*) 69% (-10%*) 67% (-13%*)

It is surprising to see that the performance of AERGT is

the lowest on 20 projects. As a heuristics-based approach, in-

tuitively, AERGT is expected to perform better. When further

checking the data, AERGT tends to extract glossary terms that

are more general than the requirement entities. For example,

when processing a requirement “As a credit card user, I want
to receive the bill reminder message on Android 9.0, so that I
could pay back my credit card on time”, AERGT extracts not

only the requirement entity “bill reminder message” but also

regular terms such as “credit card”, “Android 9.0”. This might

be due to AERGT’s heavy reliance on the linguistic heuristics.

The heuristics built on their contexts do not perform well for

requirement entity extraction in the 20 projects. Moreover, it

is expensive and difficult to rebuild the accurate and complete

heuristic rules for the 20 projects which contain abundant

business knowledge. As for the recall, RENE also outperforms

AERGT, which indicates that RENE could retrieval more

requirement entities. Two possible reasons are observed: 1)

It is difficult for AERGT to correctly extract long entities,

especially for the entities which contain more than 3 words;

2) AERGT does not perform well for the domain-specific

entities which are the out-of-vocabulary words for the general

NLP techniques. RENE, which is built on the domain-specific

contexts and equips with the LSTM-CRF model, could take

not only terms themselves but also contextual information

into consideration to determine the boundary of a requirement

entity, thus could handle the issue better on the 20 projects.

Chiu et al.’s approach is a supervised learning approach, which

shows poor performance, mainly due to the limited labeled

data. RENE also outperforms ACDO that is designed for

training the model with a small number of labeled data in the

term of semi-supervised machine learning. When expanding

the training samples from unlabeled requirements, ACDO

introduces false positives that are used are the training samples

in the next iteration. The errors accumulate with iterations,

which leads to performance degradation. The result indicates

that the training procedure in RENE is more effective than the

semi-supervised framework used in ACDO.

Summary: RENE significantly outperforms the three state-

of-the-art baselines on 20 projects, with performance metrics

of 81% precision, 79% recall, and 80% F1.

B. Transfer Learning Evaluation (RQ2)

Table III shows the performance of RENE under different

training configurations. The symbol “*” is suffixed with the

figure if the Mann-Whitney Test shows the improvement is sig-

nificant. Overall, compared to RENE−LM1−LM2 (train the

LSTM-CRF model only using labeled requirements), RENE

could significantly improve the performance by 11% precision,

12% recall and 12% F1. It is consistent and confirming with

the design purpose of introducing the general knowledge to

boost the performance of requirement entity extraction.

TABLE III
SUMMARY OF PERFORMANCE UNDER DIFFERENT TRAINING SETTINGS

step precision recall F1
RENE − LM1 − LM2 69% 72% 70%

RENE − LM2 78% (+9%*) 76% (+4%*) 77% (+7%*)
RENE − LM1 69% (+0%) 74% (+2%) 72% (+2%)

RENE 81% (+12%*) 79% (+7%*) 80% (+10%*)

Compared to the basic configuration (RENE − LM1 −
LM2), each step in RENE improves the performance in-

dividually. While the improvement of RENE − LM1 is

small and insignificant. The result implies that transfer the

layers that are only trained on the unlabeled requirements

will not significantly improve the performance. This is likely

due to that the unlabeled requirements in our dataset are not

enough to capture linguistic knowledge, which emphasizes the

importance of large-scale general corpus.

214

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 10,2023 at 13:46:27 UTC from IEEE Xplore. Restrictions apply.

Summary: In general, the training steps in RENE could

significantly improve 12% precision, 7% recall, and 10% F1

on the 20 projects. Moreover, each step could significantly

boost performance.

C. Sensitivity Analysis (RQ3)

Fig. 4. The performances under different sizes of unlabeled requirements

We investigate the performances under different sizes of

unlabeled and labeled requirements. Figure 4 shows the av-

erage performance under different sizes of unlabeled require-

ments. The results of the Mann-Whitney Test between each

adjacent sizes indicate that the recall significantly increases

before 2,500, and converges after 2500. The precision slowly

increases with the number of unlabeled requirements. In

general, 2,500 is identified to be the sweet point of cost-

effectiveness for unlabeled requirements. Moreover, we can

find that the increase in precision looks relatively smaller than

recall, which implies that the fine-tuning the LSTM language

model primarily contributes to recall.

We use all Wikipedia concepts in the general corpus and

2,500 unlabeled requirements respectively, and change the

sampling sizes of labeled requirements. Figure 5 shows the

average performances under different sizes of labeled require-

ments. The results of the Mann-Whitney Test between each

adjacent sizes show that both precision and recall significantly

increase before 30% (1015) labeled requirements, and there

are no significant differences after 30%. Thus, 1,015 is a

reasonable number of labeled requirements to train the CRF

layer in the LSTM-CRF model.

Summary: In general, 2,500 unlabeled requirements are

considered sufficient to adapt the general linguistic knowledge

Fig. 5. the performances under different sizes of labeled requirements

to requirements, and 1,015 is the relatively reasonable number

for labeled requirements to train the CRF layer. With 2,500

unlabeled requirements as well as 1,015 labeled requirements,

RENE could also achieve promising performance.

D. Usefulness Evaluation (RQ4)

TABLE IV
THE REQUIREMENT ENTITIES EXTRACTED BY ENGINEERS AND RENE

Project #Req Expert Engineer RENE
#Entity #Entity P R #Entity P R

P-1 46 40 45 62% 70% 42 79% 83%

P-2 26 22 26 58% 68% 22 82% 82%

P-3 40 37 41 71% 78% 34 88% 81%

P-4 19 17 18 67% 71% 16 81% 76%

P-5 29 31 29 79% 74% 37 70% 84%

P-6 14 14 15 73% 79% 14 79% 79%

P-7 30 31 32 69% 71% 29 83% 77%

P-8 51 44 48 58% 64% 47 79% 84%

P-9 24 27 24 75% 67% 27 85% 85%

P-10 33 29 33 55% 62% 32 72% 79%

P-11 44 40 44 57% 63% 36 89% 80%

Average - - - 66% 70% - 81% 81%

Table IV shows the results of usefulness evaluation of

RENE using the 11 on-going industry projects. The column

“Expert” summarizes the ground truth data, i.e. requirement

entities manually identified by the domain expert. The column

“Engineers” illustrates the manually extracted data from corre-

sponding engineering teams. The column “RENE” shows the

requirement entities automatically extracted by RENE, along

with its performance metrics of “precision” and “recall”. The

results show that in the real industrial setting, the quality of

manual extraction is not promising (66% precision and 70%

recall). In comparison, the results of the Mann-Whitney Test

show that the differences between “Engineer” and RENE are

significant for both “precision” and “recall”. The results indi-

cate that RENE could produce more accurate and completed

requirement entities for almost all the projects. By analyzing

the results of requirement entities extracted by engineers, we

find that the major reason for the differences in both extrac-

tions is that RENE tends to extract more complete phrases that

describe the particular business concepts, while engineers tend

to extract partial phrases, esp. for rather long, business-specific

entities. For example, there is a sentence “As a business
manager, I would like to automatically load the merchant
loan information template when the merchant fills in the
loan information so that the merchant can fill in the relevant
information in the specific format.” The requirement entity

extracted by the engineer is “loan information template”,

while the ground truth is “the merchant loan information
template”. It corresponds to a loan form specific for the

merchants rather than personals in CMB. This indicates that

manual labeling is prone to extracting incomplete expressions,

leading to ambiguity and affect subsequent software develop-

ment. By comparison, RENE could handle the problem better

and extract the complete requirement entities in practices.

Summary: When applied to 11 on-going software projects,

RENE achieves the precision and recall both at 81% for

215

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 10,2023 at 13:46:27 UTC from IEEE Xplore. Restrictions apply.

automated requirement entity extraction, and significantly out-

perform the manual extraction by the engineers. The results

indicate that the more accurate and complete requirement

entity list for each project could be built with the help of

RENE.

VI. DISCUSSION AND THREATS

A. Benefits

In the application scenario, there are normally two situations

for a continuous-evolved software system: 1) a requirement

leads to new functionality that needs to be added into the

system; 2) a requirement involves the changes of the existing

functionality in the system. For the first case, the requirement

entities extracted by RENE could be used as the sources

to build the feature model, design the architecture of code

and database schema, expand the system knowledge base and

etc [10], [37], [38]. For the second case, there are typically

existing entities in the systems. RENE could also be applied

to extract the requirement entities. The extracted requirement

entities could be linked into different elements as entities in a

feature model, code entities, database entities, and knowledge

bases using the Entity Linking techniques [39]–[41] for further

change impact analysis [6] and feature location [42].

B. Lessons Learned

1) Handling the out-of-vocabulary problem: In our prac-

tice, we found that a large number of textual requirements

are incorrectly parsed by NLP tool kits. After analyzing

the incorrect cases, we noted that most cases are related to

business terms which are named by the company according

to the specific business scenarios. It is known as the out-of-

vocabulary (OOV) problem [17] in NLP. This is due to that

the tool kits are all trained on the general corpus which mainly

contain a common vocabulary of terms. Especially, the OOV

problem is particularly obvious in the languages which are not

naturally segmented by spaces, such as Chinese, Korean, and

Japanese. The errors of NLP tool kits can be introduced into

the approaches built upon the general NLP techniques, which

could also influence their performance. To solve the OOV

problem, almost all NLP tool kits have provided interfaces

to import custom dictionary to help parse the texts. However,

this solution requires lots of human efforts to carefully review

a large number of documents to ensure the high quality of

dictionaries, which is cost-consuming. Another solution is to

leverage the learning-based approaches, which are not totally

built upon NLP tool kits, and has been verified to handle the

OOV problem in NLP tasks effectively [43]–[45].

2) Sequence modelling instead of bag-of-words modeling:
When dealing with tasks such as text classification, infor-

mation retrieval, these natural language artifacts are usually

modeled using bag-of-words (BOW) [46]. BOW puts all words

in a bag, regardless of their morphology and word order,

that is, each word is independent. Considering that natural

language is a sequence of words, in which each word carries

rich grammatical and contextual information, it is a better

choice to model the natural language articles into sequences

rather than BOW. Especially for the requirement entities,

they typically appear with indicative contexts, which makes

the sequence tagging model such as the LSTM-CRF model

achieve satisfactory results.

3) Dealing with tasks with limited labeled data: Thanks to

the advances of machine learning techniques, many related

tasks have now reached impressive performance [47]–[49].

However, they are mostly supervised learning which requires

massive labeled data, incurring significant labeling effort

[12]. Compared to labeled data, it is much easier to obtain

an amount of historical data without labeling. In addition,

there are also lots of freely accessible data sources such

as Wikipedia, StackOverflow, and Github, which have been

applied to improve the performances of specific tasks such as

software text retrieval [50], requirement term extraction [51],

and text classification [52]. In our practice, we propose a novel

transfer learning approach that utilizes Wikipedia concepts and

unlabeled requirements to boost performance. We consider

the proposed approach is not limited to requirement entity

extraction, and could be generalized to more application

scenarios with low labeled resources. Therefore, when we

only have limited labeled resources, it is a potential choice to

consider using public corpora and unlabeled data to improve

the performance.

C. Threats to Validity

External Validity. The external threats are related to the

generalization of the proposed approach. First, we experi-

mented with the data taken from a company. The results

may be different from other scenarios. However, CMB is a

large financial company, and there are over 200 teams that

cover different business applications. In addition, in our case

study, we train the model and evaluate the performance on the

requirements from 20 systems, which could reduce this threat.

Second, the studied subjects in this study are requirements

only, which may not be appreciated to other artifacts like app

reviews and code documentation. However, RENE extracts

requirement entities from sentences and do not utilize unique

characteristics except for natural language description, which

could alleviate the threat.

Internal Validity. The internal threats relate to experimental

errors and biases. First, in our approach, we utilize the unla-

beled requirements aiming at adapting to characteristics of re-

quirements. These unlabeled requirements are given by CMB

in the financial domain, and the adapted knowledge model

may also be restricted to the financial domain rather than

general requirements. However, there are 3,500 requirements

from 20 projects used for fine-tuning the LSTM language

model. Each project contains its topics and applications, which

could alleviate the threats. Second, the AERGT is designed for

requirements glossary term extraction, and is included as the

baseline approach for requirement entity extraction. Consider-

ing that AERGT is conducted under different contexts, it may

introduce bias into the performance.

216

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 10,2023 at 13:46:27 UTC from IEEE Xplore. Restrictions apply.

VII. RELATED WORK

We introduce the related approaches for term extraction.

According to the techniques used in the approaches, we divide

them into two categories, i.e., heuristics-based approaches and

learning-based approaches.

A. Heuristics-Based Approaches

Typically, heuristics-based approaches parse the text can-

didates using NLP tool kits, then build linguistic rules upon

the parsing results according to expertise to extract the target

information. To our best knowledge, all the previous stud-

ies for requirements belong to this group. Bourigault et al.

[53] described a linguistic approach for terminological noun

phrases. It is implemented by regular expressions along with

part-of-speech tags returned by the NLP toolkit to extract

certain combinations of noun phrases. Dwarakanath et al. [54]

used linguistic rules to identify process nouns, abstract nouns,

and auxiliary verbs from natural language requirements. It

firstly parses part-of-speech tags, and builds the linguistic

rules to handle co-ordinating conjunctions, adjectival modifiers

and nominalizations. Then it refines the results by statistical

techniques. Ménard et al. [55] proposed an approach to ex-

tract domain-specific concepts from business documents. It is

implemented as a pipeline including a candidate generation

step based on part-of-speech patterns, several filtering modules

to filter out the irrelevant terms by heuristics. Johann et

al. [5] proposed an approach to extract noun phrases verb

phrases that are related to features from app descriptions and

app reviews. It gives 18 predefined part-of-speech patterns

to extract phrases. Arora et al. [14] developed an approach

for extracting glossary terms and their related terms from

requirements documents. It firstly extracts the candidate noun

phrases via NLTK. Then, three linguistic heuristics are utilized

to refine the candidates. These approaches typically give a set

of pre-defined rules according to the expertise in their contexts.

Different from the previous studies, our approach is specific

to the requirement entity extraction and based on the machine

learning model which could avoid the overload of manually

building expert rules for each domain.

B. Learning-Based Approaches

Learning-based approaches adopt the machine learning al-

gorithm to extract target information from texts, have been

widely-used for many general information extraction tasks.

Finkel et al. [48] trained a CRF model for named entity recog-

nition (NER) with 10 hand-crafted features. Lample et al. [8]

presented a widely-used LSTM-CRF model for NER, which

aims at extracting target information in terms of sequence tag-

ging and eliminates the need for feature engineering. Chiu et

al. [9] presented a novel neural network architecture to extract

named entities from the general corpus. It detects word-level

and character-level features using a hybrid bidirectional LSTM

and CNN architecture. With the help of machine learning,

general information extraction tasks have achieved promising

performance under the condition of sufficient labeled data.

However, labeling is a labor-intensive activity especially in

the domains requiring extensive expertise. Thus, a growing

number of researches focused on boosting performance by

unlabeled data. Huang et al. [35] proposed an approach to

extracted domain-specific concepts based on a semi-supervised

CRF model. Using a small number of labeled data as seeds,

it iteratively expands training samples from unlabeled data

by bootstrapping. It is included in our study as the baseline

approach. Sachan et al. [56] investigated how to use unla-

beled text data to improve the performance of named entity

recognition. Specifically, they trained a bidirectional language

model (BiLM) on unlabeled data and transfer its weights to

pre-train a named entity recognition model with the same

architecture as the BiLM, which results in a better parameter

initialization of the NER model. Chong et al. [10] proposed a

semi-supervised approach based on LSTM-CRF model for the

glossary construction from source code and documentation. It

firstly identifies the initial identifiers from the source code via

heuristics. Using the initial identifiers as the seed terms, it

iteratively expands the training set from unlabeled comments

and trains the LSTM-CRF model via bootstrapping. Different

from the previous studies which focus on general corpus, our

study is aimed at requirement entity extraction in specific

domains. The goal of the proposed approach is to solve the

problem of lacking domain-specific NLP techniques

VIII. CONCLUSION

Establishing and maintaining requirement entities plays an

important role in software development and maintenance. This

paper proposed a novel approach RENE to extract requirement

entities from textual requirements automatically. It employs

the LSTM-CRF model and transfer learning to resolve the

domain-specific problem and data deficiency issues. We eval-

uated the RENE on an industrial dataset build from 20

continuously-evolved software systems. The evaluation results

show that the proposed approach could reach 81% precision,

79% recall and 80% F1, and outperforms the three state-

of-the-art baselines. And we verified the value of general

corpus and unlabeled data and provided an effective practice

to make use of these data, which could be an inspiration on

how to further boost the performance for the specific task.

Moreover, by expert review on 11 randomly sampled projects,

our approach could produce more accurate and complete

requirement entities than the manual extraction by engineers.

The presented material is just the starting point of the work

in progress. Future work will also include similar requirement

entity clustering and automatic requirement entity-relationship

construction.

ACKNOWLEDGMENT

This work is supported by China Merchants Bank, the Na-

tional Science Foundation of China under grant No.61802374,

No.61432001, No.61602450, and the National Key Re-

search and Development Program of China under grant

No.2018YFB1403400.

217

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 10,2023 at 13:46:27 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] J. E. Matson, B. E. Barrett, and J. M. Mellichamp, “Software Devel-
opment Cost Estimation Using Function Points,” IEEE Transactions on
Software Engineering, vol. 20, no. 4, pp. 275–287, 1994.

[2] M. Bundschuh and C. Dekkers, The IFPUG Function Point Counting
Method. Springer Berlin Heidelberg, 2008.

[3] A. Hira and B. W. Boehm, “Function point analysis for software mainte-
nance,” in Proceedings of the 10th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement, ESEM 2016,
Ciudad Real, Spain, September 8-9, 2016, 2016, pp. 48:1–48:6.

[4] A. Z. Abualkishik, F. Ferrucci, C. Gravino, L. Lavazza, L. Geng,
R. Meli, and G. Robiolo, “A study on the statistical convertibility of
ifpug function point, cosmic function point and simple function point,”
Information & Software Technology, vol. 86, pp. 1–19, 2017.

[5] T. Johann, C. Stanik, W. Maalej et al., “Safe: A simple approach for
feature extraction from app descriptions and app reviews,” in 2017 IEEE
25th International Requirements Engineering Conference (RE). IEEE,
2017, pp. 21–30.

[6] W. Khlif, M. Haoues, A. Sellami, and H. Ben-Abdallah, “Analyzing
functional changes in bpmn models using cosmic,” in 12th International
Conference on Software Technologies, 2017.

[7] W. Khlif, A. Sellami, M. Haoues, and H. Ben-Abdallah, “Using cosmic
fsm method to analyze the impact of functional changes in business
process models,” in Enase: International Conference on Evaluation of
Novel Approaches to Software Engineering, 2018.

[8] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer,
“Neural architectures for named entity recognition,” in NAACL HLT
2016, The 2016 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies,
San Diego California, USA, June 12-17, 2016, 2016, pp. 260–270.

[9] J. P. C. Chiu and E. Nichols, “Named entity recognition with bidirec-
tional lstm-cnns,” Computer Science, 2016.

[10] W. Chong, P. Xin, L. Mingwei, X. zhenchang, B. Xuefang, X. Bing,
and W. Tuo, “A learning-based approach for automatic construction
of domain glossary from source code and documentation,” in ACM
Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering(ESEC/FSE), 2019.

[11] X. J. Zhu, “Semi-supervised learning literature survey,” University of
Wisconsin-Madison Department of Computer Sciences, Tech. Rep.,
2005.

[12] V. T. Dhinakaran, R. Pulle, N. Ajmeri, and P. K. Murukannaiah, “App
review analysis via active learning,” in International Requirements
Engineering Conference, 2018.

[13] C. Arora, M. Sabetzadeh, L. C. Briand, and F. Zimmer, “Improving
requirements glossary construction via clustering: approach and indus-
trial case studies,” in Acm/ieee International Symposium on Empirical
Software Engineering and Measurement, 2014.

[14] C. Arora, M. Sabetzadeh, L. Briand, and F. Zimmer, “Automated extrac-
tion and clustering of requirements glossary terms,” IEEE Transactions
on Software Engineering, vol. 43, no. 10, pp. 918–945, 2016.

[15] C. Arora, M. Sabetzadeh, L. C. Briand, and F. Zimmer, “Automated
extraction and clustering of requirements glossary terms,” IEEE Trans.
Software Eng., vol. 43, no. 10, pp. 918–945, 2017.

[16] T. Gemkow, M. Conzelmann, K. Hartig, and A. Vogelsang, “[ieee
2018 ieee 26th international requirements engineering conference (re)
- banff, ab, canada (2018.8.20-2018.8.24)] 2018 ieee 26th international
requirements engineering conference (re) - automatic glossary term
extraction from large-scale requirements,” pp. 412–417, 2018.

[17] L. Qin, “Learning out-of-vocabulary words in automatic speech recog-
nition,” Ph.D. dissertation, Citeseer, 2013.

[18] D. Nadeau and S. Sekine, “A survey of named entity recognition and
classification,” Lingvisticæ Investigationes, vol. 30, no. 1, pp. 3–26,
2007.

[19] E. F. T. K. Sang, “Introduction to the conll-2002 shared task: Language-
independent named entity recognition,” 2002.

[20] J. Lafferty, A. McCallum, and F. C. Pereira, “Conditional random fields:
Probabilistic models for segmenting and labeling sequence data,” 2001.

[21] Sutton and Charles, “An introduction to conditional random fields,”
Foundations & Trends® in Machine Learning, vol. 4, no. 4, pp. 267–
373, 2012.

[22] A. Tang, D. Jackson, J. Hobbs, W. Chen, J. L. Smith, H. Patel, A. Prieto,
D. Petrusca, M. I. Grivich, and A. Sher, “A maximum entropy model
applied to spatial and temporal correlations from cortical networks in

vitro,” Journal of Neuroscience the Official Journal of the Society for
Neuroscience, vol. 28, no. 2, pp. 505–518, 2008.

[23] J. Felsenstein and G. A. Churchill, “A hidden markov model approach
to variation among sites in rate of evolution,” Molecular Biology &
Evolution, vol. 13, no. 1, pp. 93–104, 1996.

[24] Z. Huang, W. Xu, and K. Yu, “Bidirectional LSTM-CRF models for
sequence tagging,” CoRR, vol. abs/1508.01991, 2015.

[25] Z. Jie and W. Lu, “Dependency-guided LSTM-CRF for named entity
recognition,” in Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing, EMNLP-IJCNLP 2019,
Hong Kong, China, November 3-7, 2019, 2019, pp. 3860–3870.

[26] M. Xu, X. Zhang, and L. Guo, “Jointly detecting and extracting social
events from twitter using gated bilstm-crf,” IEEE Access, vol. 7, pp.
148 462–148 471, 2019.

[27] S. Ceri, A. Bozzon, M. Brambilla, E. D. Valle, P. Fraternali, and S. Quar-
teroni, “An introduction to information retrieval,” Pharmacogenomics
Journal, vol. 2, no. 2, pp. 96–102, 2013.

[28] R. Rosenfeld, “Two decades of statistical language modeling: Where
do we go from here?” Proceedings of the IEEE, vol. 88, no. 8, pp.
1270–1278, 2000.

[29] S. J. Pan and Y. Qiang, “A survey on transfer learning,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–
1359, 2010.

[30] R. Socher, Y. Bengio, and C. D. Manning, “Deep learning for nlp
(without magic),” Acl Tutorial, 2013.

[31] R. Zunino and P. Gastaldo, “Analog implementation of the softmax
function,” in IEEE International Symposium on Circuits & Systems,
2002.

[32] N. R. Pal, “On minimum cross-entropy thresholding,” Pattern Recogni-
tion, vol. 29, no. 4, pp. 575–580, 1996.

[33] L. Ratinov and R. Dan, “Design challenges and misconceptions in
named entity recognition,” in Conll 09: Thirteenth Conference on
Computational Natural Language Learning, 2009.

[34] H. J. Dai, P. T. Lai, Y. C. Chang, and T. H. Tsai, “Enhancing of
chemical compound and drug name recognition using representative
tag scheme and fine-grained tokenization,” Journal of Cheminformatics,
vol. 7, no. S1, p. S14, 2015.

[35] R. Huang and E. Riloff, “Inducing domain-specific semantic class
taggers from (almost) nothing,” 2010.

[36] D. M. Berry, J. Cleland-Huang, A. Ferrari, W. Maalej, J. Mylopoulos,
D. Zowghi, D. M. Berry, J. Cleland-Huang, A. Ferrari, and W. Maalej,
“Panel: Context-dependent evaluation of tools for nl re tasks: Recall vs.
precision, and beyond,” in Requirements Engineering Conference, 2017.

[37] D. Ye, Z. Xing, C. Y. Foo, Q. A. Zi, L. Jing, and N. Kapre, “Software-
specific named entity recognition in software engineering social con-
tent,” in IEEE International Conference on Software Analysis, 2016.

[38] X. Zhao, Z. Xing, M. A. Kabir, N. Sawada, and S. W. Lin, “Hdskg:
Harvesting domain specific knowledge graph from content of webpages,”
in IEEE International Conference on Software Analysis, 2017.

[39] C. L. Tan, “Entity linking leveraging automatically generated annota-
tion,” in The 23(rd) International Conference on Computational Lin-
guistics Proceedings of the Main Conference (Volume 2), 2010.

[40] X. Han, S. Le, and J. Zhao, “Collective entity linking in web text,”
in Proceeding of International Acm Sigir Conference on Research &
Development in Information Retrieval, 2011.

[41] W. Shen, J. Wang, and J. Han, “Entity linking with a knowledge base:
Issues, techniques, and solutions,” IEEE Transactions on Knowledge &
Data Engineering, vol. 27, no. 2, pp. 443–460, 2015.

[42] F. Pérez, J. Font, L. Arcega, and C. Cetina, “Collaborative feature
location in models through automatic query expansion,” Autom. Softw.
Eng., vol. 26, no. 1, pp. 161–202, 2019.

[43] W. Ling, I. Trancoso, C. Dyer, and A. W. Black, “Character-based neural
machine translation,” arXiv preprint arXiv:1511.04586, 2015.

[44] A. Maas, Z. Xie, D. Jurafsky, and A. Ng, “Lexicon-free conversational
speech recognition with neural networks,” in Proceedings of the 2015
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, 2015, pp.
345–354.

[45] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend and spell: A
neural network for large vocabulary conversational speech recognition,”
in 2016 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2016, pp. 4960–4964.

218

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 10,2023 at 13:46:27 UTC from IEEE Xplore. Restrictions apply.

[46] A. Sethy and B. Ramabhadran, “Bag-of-word normalized n-gram mod-
els,” in Ninth Annual Conference of the International Speech Commu-
nication Association, 2008.

[47] A. Di Sorbo, S. Panichella, C. V. Alexandru, J. Shimagaki, C. A.
Visaggio, G. Canfora, and H. C. Gall, “What would users change in my
app? summarizing app reviews for recommending software changes,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. ACM, 2016, pp. 499–510.

[48] J. R. Finkel, T. Grenager, and C. Manning, “Incorporating non-local
information into information extraction systems by gibbs sampling,” in
Meeting on Association for Computational Linguistics, 2005.

[49] W. Maalej, Z. Kurtanović, H. Nabil, and C. Stanik, “On the automatic
classification of app reviews,” Requirements Engineering, vol. 21, no. 3,
pp. 311–331, 2016.

[50] Z. Lin, Y. Zou, J. Zhao, and B. Xie, “Improving software text retrieval
using conceptual knowledge in source code,” in 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2017, pp. 123–134.

[51] C. Arora, M. Sabetzadeh, L. Briand, and F. Zimmer, “Automated extrac-

tion and clustering of requirements glossary terms,” IEEE Transactions
on Software Engineering, vol. 43, no. 10, pp. 918–945, 2017.

[52] J. Howard and S. Ruder, “Universal language model fine-tuning for text
classification,” 2018.

[53] D. Bourigault, “Surface grammatical analysis for the extraction of
terminological noun phrases,” in Proceedings of the 14th conference on
Computational linguistics-Volume 3. Association for Computational
Linguistics, 1992, pp. 977–981.

[54] A. Dwarakanath, R. R. Ramnani, and S. Sengupta, “Automatic extraction
of glossary terms from natural language requirements,” in 2013 21st
IEEE International Requirements Engineering Conference (RE). IEEE,
2013, pp. 314–319.

[55] P. A. Ménard and S. Ratté, “Concept extraction from business documents
for software engineering projects,” Automated Software Engineering,
vol. 23, no. 4, pp. 649–686, 2016.

[56] D. S. Sachan, P. Xie, and E. P. Xing, “Effective use of bidirectional
language modeling for medical named entity recognition,” CoRR, vol.
abs/1711.07908, 2017.

219

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 10,2023 at 13:46:27 UTC from IEEE Xplore. Restrictions apply.

