
BehaviorKI: Behavior Pattern Based Runtime Integrity Checking for Operating
System Kernel

Xinyue Feng12, Qiusong Yang12, Lin Shi12, Qing Wang123
1Laboratory for Internet Software Technologies, Institute of Software Chinese Academy of Sciences, Beijing, China

2University of Chinese Academy of Sciences, Beijing, China
3State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China

{xinyue, qiusong, shilin, wangqing }@nfs.iscas.ac.cn

Abstract—Kernel rootkits pose a serious threat to system se-

curity by tampering with the state of operating system inconspic-
uously. To ensure operating system kernel integrity, Virtual Ma-
chine Monitor (VMM) based approaches have been proposed.
Most of these approaches use snapshot-based or event-triggered
techniques. However, snapshot-based techniques have been suf-
fering from missing transient attacks or significant performance
overhead, while event-triggered methods are facing with heavy
workload as integrity checking might be triggered by any suspi-
cious actions.

In this paper, we propose a novel solution which is a behav-
ior-triggered integrity checking approach named BehaviorKI. By
analyzing attacking processes, BehaviorKI can extract a set of
behavior patterns which characterize malicious behaviors. Be-
haviorKI will trigger integrity checking with kernel invariants
when a malicious behavior pattern detected. In this way, our
approach can alleviate the performance burden by reducing the
frequent kernel integrity checking. The experiment results show
that BehaviorKI outperforms existing snapshot-based and event-
triggered approaches.

Keywords-Behavior Patterns; Kernel Integrity Checking;
Kernel Rootkit Analysis

I. INTRODUCTION
Kernel rootkits are malwares that subvert the security of the

machine and cause malicious functions to be executed. They
can load themselves in the highest privilege level, as well as
hiding from the traditional antivirus software. Kernel rootkits
usually attack kernel code and data structures during runtime
by deceiving the detecting and protecting mechanisms running
on the kernel layer or application layer. Many researches [4, 5,
7, 8] address this issue by adding the detecting and protecting
mechanisms in the Virtual Machine Monitor (VMM) layer
which is considered as a safe execution environment. When
deploying rootkits detecting mechanisms on the VMM layer,
they take the advantages of hardware-assisted virtualization
technology to intercept system events and track system states.
They cannot be perceived and destroyed by rootkits deployed
on operating system.

The integrity of a program is a binary property that indi-
cates whether the program and/or its environment have been
modified in an unauthorized manner [11]. The integrity [20] of
operating system refers to that the operating system should run
as expected, instead of being modified by rootkits. Integrity
checking will inspect whether the critical components in oper-

ating system are modified illegally, including static compo-
nents and dynamic components.

In order to check whether there are rootkits that threaten
kernel integrity during runtime, Copilot [1] and SBCFI [2] pre-
sent snapshot-based solutions, which monitor kernel states by
periodically executing monitor processes and comparing the
collected snapshots of memory contents of the kernel static
regions. Recently, researchers realize that dynamic data integri-
ty is also crucial to the security of computer system for modern
rootkit used dynamic data as their attacking target [21, 22].
Gibraltar [10] introduced data invariants to define kernel data
integrity and checked those data invariants at regular intervals.
However, the transient rootkits are likely to be missed if they
finish the attacking between two snapshots. One way to deal
with this situation is increasing the frequency of snapshots.
However, it will increase performance overhead significantly
[15].

To detect transient rootkits and reduce performance over-
head, event-triggered monitoring techniques are proposed. The
trigging events include hypercall interception, page fault inter-
ception [4, 5], and etc. However, once some registered event
occurs, an integrity checking will be triggered without consid-
ering the event context. As a result, there will be too many
trigging events that are irrelevant to kernel integrity violation.
For example, a writing operation to the particular regions of
memory will trigger an unnecessary integrity checking, and
thus reduces system performance. To reduce performance
overhead of monitoring memory access, some researches [3,
23] only trap events that imply definite misuse. KI-Mon [3]
uses a whitelist-based filter to avoid unnecessary kernel integri-
ty checking. But essentially, these approaches do not consider
the context when events occurred.

The goal of our work is to reduce kernel integrity checking
overhead while ensuring the checking efficiency. Behavior
models have been widely used in traditional intrusion detection
technologies to monitor malicious behavior [6, 9, 16]. The
basic idea of BehaviorKI is to characterize malicious behavior
by behavior model, and use malicious behavior to capture po-
tential events that may destroy kernel integrity. In this way,
BehaviorKI filters unnecessary kernel integrity checking with
events context. It will reduce the frequency of kernel integrity
checking and relieve system overload.

In our approach, we propose BehaviorKI, a novel integrity
checking system based on behavior-trigger method. Behavior-
KI introduces behavior patterns to decide when to trigger nec-

13

2018 IEEE International Conference on Software Quality, Reliability and Security

978-1-5386-7757-5/18/$31.00 ©2018 IEEE
DOI 10.1109/QRS.2018.00015

essary kernel integrity checking. Once malicious behaviors are
detected, BehaviorKI will trigger to check kernel data invari-
ants to verify whether kernel integrity has been tampered. Data
invariants [10, 24] are used to describe the integrity property of
critical data structures. The integrity property should be kept all
the time, and violations of integrity property indicate that the
system has been attacked by rootkits directly or indirectly.

We implement the BehaviorKI prototype on Xen hypervi-
sor [17] which is an open-source hypervisor-based environ-
ment. We evaluated the effectiveness of BehaviorKI with ex-
periments. In our experiments, we compared BehaviorKI with
snapshot-based methods at 1ms, 10ms, 100ms and 1000ms
intervals. To illustrate the decline of performance overhead, we
compared BehaviorKI and event-triggered methods with 2610
kernel invariants. At last, we did experiment of BehaviorKI
with 24954 invariants to illustrate that our approach can per-
form well with large numbers of invariants. We use the
STREAM benchmark [29] to measure the performance cost on
memory bandwidth of the monitored system. The results show
that performance overhead of integrity checking is positively
correlated with the frequency of integrity checking and the
scale of checking contents. In our evaluation, BehaviorKI can
detect transient attacks that missed by snapshot-based method.
Comparing with event-triggered methods, BehaviorKI reduces
performance overhead with lower integrity checking frequency
and can detect the same number of rootkits in our experiments

In this paper, we make the following contributions:

 We model the malicious behaviors with behavior pat-
terns by extracting frequent event sequences from
historical attacks. Those patterns can be used to de-
tect future integrity violations.

 We propose a novel approach based on the identified
malicious behavior patterns to trigger kernel integri-
ty check, which can reduce performance overhead
by reducing the frequency of integrity check. It trig-
gers the integrity check only when identified mali-
cious behaviors pattern occurs.

 We implement the prototype of BehaviorKI based on
hardware-assisted virtualization technology and an
open sourced virtualization platform Xen. It is port-
able to other VMM-based platforms that support
hardware-assisted virtualization.

 We conduct experiments to evaluate the effectiveness
of our approach. The results show that BehaviorKI
can detect more dynamic data integrity violations
than snapshot-based methods and outperform event-
triggered methods in performance overhead.

The remainder of the paper is organized as follows. Sec-
tion II presents some background. Section describes our
design of BehaviorKI. We evaluate BehaviorKI deployed on
Xen in section , discuss the results and future works in sec-
tion and . We describe the relative works in section
and conclude in section .

II. BACKGROUND
In this section, we describe the background of hardware-

assisted virtualization and the performance problem of integrity
checking with hardware-assisted virtualization firstly. Then, we
describe the thread model and our assumptions.

A. Hardware-assisted Virtualization
In order to monitor behaviors and measure the integrity of

operating system in the privileged level, we utilize hardware-
assisted virtualization (HAV), which supports unmodified
guest OS with small performance overhead. In this paper we
use Intel virtualization technology VT-x [34].

To support CPU virtualization, VT-x provides two mode:
VMX (Virtual-Machine eXtension) root mode and non-root
mode. The two mode can switch between each other through a
set of instructions as VM Exit and VM Entry. Once a privi-
leged instruction is executed in the VMX non-root mode, pro-
cessor control switches to the root mode through the VM exit
instruction. After the hypervisor in root mode takes certain
actions to handle VM exit, it switches back to virtual machine
through the VM entry instruction [12].

Extended Page Table (EPT) is designed for virtualizing
Memory Management Unit (MMU) with hardware. MMU is
used for translating guest virtual addresses to guest physical
addresses. Guest virtual address is the virtual address used by
guest OS, Guest physical address is the physical memory ad-
dress of guest VM. When EPT is enabled, guest physical ad-
dresses are translated to real machine addresses by traversing a
set of EPT page structures. EPT can also specify the privileges
of software when they access the address, e.g., read, write and
execute. Any attempts that access disallowed memory will
trigger EPT violations, and then cause VM exits [12].

B. Performance Overhead Problem
When we use technology of hardware-assisted virtualiza-

tion, many events could cause the guest VM trapping into
VMM. When these events trigger VM exit, they will cause a
penalty of 2000 to 7000 CPU cycles approximately [14]. This
is one of the reasons why virtualizations increase performance
overhead. Moreover, the usage of EPT technology will increase
the burden of this kind of performance overhead. By setting
appropriate access permission to monitored pages, EPT tech-
nology can monitor the memory access events. It will trigger
VM exit if there exits any access to the specific pages. Monitor
events will cause the VM trapped into VMM frequently in con-
sequent.

Besides VM trapping, memory addresses translation from
virtual addresses to machine addresses is another reason that
increases performance overhead. The hardware will first search
for memory pages from translation lookaside buffer (TLB),
which cache the most recently used page table entries. If the
pages are not found, the hardware will trigger a 2D page walk
which is a long latency operation to fetch the virtual-to-
machine mapping [13]. Such 2D page walk will cause the per-
formance overload significantly. When we check the kernel
integrity in VMM level, we have to reconstruct the data struc-
tures from operating system memory space to VMM via
memory address translations. It will increase performance

14

overhead significantly, especially when the scale of translations
is large. Our work will try to reduce this part of performance
overhead by reducing the frequency of integrity checking.

C. Threat Model
In our work, we focus on attacks that exploit kernel-level

vulnerabilities instead of hardware-level vulnerabilities such as
vulnerabilities in CPU, memory controller, system memory
chips and system bus. These attacks consists of transient at-
tacks which have shot living duration in memory and persistent
attacks. Besides, hardware attacks and attackers whose target is
the hypervisor are not considered in this work. The primary
threat that BehaviorKI try to avert is kernel rootkits. Kernel
rootkits have privileges on operating system kernel and try to
mask their presences. These rootkits can modify both static and
dynamic kernel components to achieve their attacking goals.
Instead of preventing these types of attacks from violating the
integrity of operating system kernel, BehaviorKI only detect
whether the integrity of operating system is violated in an un-
authorized manner. Data privacy is out of our study scope.

D. Assumptions
There are two assumptions we set in our approach.

1) We assume that the underlying hardware and hypervisor
can be trusted, as assumed by most virtualization security ar-
chitectures [4, 30]. Some researchers even proved the trust of
tiny trusty hypervisors with formal methods, such as XMHF
[16] and BitVisor [19]. Our approach only relies on hardware
virtualization technology and can be applicable on these hyper-
visors.

2) We assume that the kernel integrity will not be attacked
during booting time. BehaviorKI that starts kernel integrity
checking after the operating system booting and reaching a
stable state. This is because the kernel code and data structures
change significantly during the system initialization, and there
already exists mature technologies, such as secure boot [35], to
ensure kernel integrity before being loaded.

III. OUR APPROACH: BEHAVIORKI
BehaviorKI is a behavior-pattern based integrity checking

system. It launches the integrity checking when malicious be-
havior is detected. BehaviorKI is designed in hypervisor level
to be totally transparent to the monitored operating system
without modifying the operating system kernel. In order to
monitor the states of operating system and check the kernel
integrity without interference from kernel rootkits, BehaviorKI
requires a higher level authority to access the states and
memory of the kernel. The goal of BehaviorKI is to reduce the
performance overhead when checking integrity. By filtering
out events that are irrelevant to malicious behaviors, it can re-
duce the frequency of kernel integrity checking. Therefore,
BehaviorKI could further minimize performance overhead dur-
ing integrity checking.

The architecture of BehaviorKI is shown in Fig.1. It con-
sists of four modules in the hypervisor layer which are mali-
cious behavior modeling, behavior monitoring, kernel invari-
ants extracting and integrity checking. In “malicious behavior

modeling”, we analyze the behavior of historical rootkits
extract its frequent events sequences, and model them as mali-
cious behavior patterns. Kernel invariant extracting gets kernel
invariants automatically by analyzing kernel source code and
kernel memory snapshots. Malicious behavior modeling and
kernel invariant extracting are established in advance, while
behavior monitoring and integrity checking are running online.
Behavior monitoring module monitors state changes of operat-
ing system by intercepting basic events with hardware-assisted
virtualization. It collects these events and matches them with
behavior patterns. When the behavior monitoring module de-
tects malicious behavior, it will trigger the integrity checking
module to check kernel integrity. Then the integrity checking
module extracts critical kernel data structures from OS level,
and checks whether kernel invariants are violated or not. The
details of the four modules are introduced as follows.

A. Malicious Behavior Modeling
BehaviorKI describes the attacking malicious behavior as

the sequences of events, and introduce behavior patterns to
describe the relationship between events. BehaviorKI identifies
malicious behaviors patterns by analyzing historical rootkits.
We characterize attacking behaviors of rootkits with behavior
patterns compositing of operating events such as register ac-
cesses, memory accesses and system calls, etc.

1) Basic event
VMM can intercept a wide range of events from hardware

relevant events to OS level events. The hardware relevant
events are registers accessing, modifications to exception han-
dler, I/O access interceptions and memory accessing. Operating
system level events mainly refer to system calls. In our work,
we focus on register accessing events and memory accessing
events at hardware level, and intercept system calls at operating
system level. We refer the above events as basic events. The
formal presentations of basic events are listed in TABLE .

Fig. 1. The architecture of BehaviorKI. Behavior monitoring module and

integrity checking module run in hypervisor level to check the kernel
integrity.

15

Register accessing operation: For register relevant opera-
tions, BehaviorKI focuses on control register (CR), debug reg-
ister (DR), model-specific register (MSR), and global de-
scriptor table register (GDTR). By intercepting register access
events, BehaviorKI can perceive the state changes of the oper-
ating system. For example, CR3 records the Page Directory
Base Address for the virtual address space of the running pro-
cesses. Once a process is switched, contents of CR3 will be
changed. By intercepting CR3 writing event, BehaviorKI can
monitor the process switching behavior. In BehaviorKI, the
register operation is represented as reg_op: <r, op>, where r
represents the register that is being accessed and op represents
the type of the access (read or write).

Memory access operation: Because rootkits will violate
kernel integrity through memory writing inevitably, memory
access operations are critical system events on hardware. How-
ever, memory access interception could cause significant per-
formance overhead as it creates extremely huge number of VM
exit events. To reduce the performance overhead, BehaviorKI
only extracts memory access events to critical regions. The
memory access operation is represented as mem_op: <m, l, op>
where m represents the name of critical memory region being
monitored. l represents the location of region m in memory,
and the scope of l is represented as l [start_address,
end_address]. These addresses are virtual addresses in the op-
erating system. op represents the type of the access, such as
read, write or execute.

System call based operation: System calls provide an es-
sential interface between kernel mode functions and user pro-
grams. Many intrusion detection studies have reported that the
attacks cause damage via system calls [9]. For events in operat-
ing system level, BehaviorKI intercepts system calls and pa-
rameters in them. A system call is represented as system_call:
<syscall_num, arg1, arg2, …, argn > where syscall_num is the
system call number, argi represents the i-th argument of the
system call. Rootkits usually tamper kernel integrity soon after
a system call.

2) Behavior patterns
As malicious behaviors are conducted by the sequences of

basic events, we use a pattern language to describe the attack-
ing process. There are four relations between patterns: sequenc-
ing, alternation, repetition and temporal constraints. The rela-
tions between behavior patterns and their meanings are listed as
follows.

pat: reg_op |mem_op |system_call represents a pattern
based on basic events.

sequencing: pat1;pat2 means pat2 appears immediately
after pat1. It represents sequential relation between two pat-
terns.

alternation: pat1||pat2 means pat1 or pat2 happens at a
time. It represents alternation relation between two patterns.

repetition: pat* means pat appears for zero or more than
zero times. It represents repetition of one pattern.

temporal constraints: <pat1,pat2> within t means pat2
appears in t time interval after pat1. BehaviorKI also use the
number of trapped events to represent t. <pat1,pat2> within n
means that there are less than n events trapped between pat1
and pat2.

3) An example
Adore-ng1 is a LKM-based rootkit that modifies the struc-

ture of file operations in Virtual File System (VFS) layer. VFS
[33] provides an abstraction to access file system in the Linux
kernel. The inode is a data structure in a Unix-style file system
that describes a filesystem object. Operating system kernel
maintains a uniform abstract interface for each file with the
inode data structure, and the fops fields of inode define opera-
tion functions in VFS. Adore-ng replaces function pointers in
fops with the hacked ones to hide files, processes, and ports.

When an Adore-ng module is loaded, it uses the LKM hid-
ing technique to conceal itself from the kernel. It manipulates
linked list structure module->list to hide an entry in the
Loadable Kernel Module (LKM) list. Adore-ng removes the
entries from the list once it injects the malicious code into the
kernel memory space. The following code is frequently used

TABLE I. FORMAL PRESENTATIONS OF BASIC EVENTS

system operation formal presentation

reg_op <r, op>

mem_op <m, l, op>

system_call <syscall_num, arg1, arg2, … , argn >

Fig. 2. An example: Attacking process of Adore-ng

1https://github.com/trimpsyw/adore-ng.

/*Adore-ng*/
function Adore-ng

init_module;
List_del (&__this_module->list);

adore_init;
end function
function adore_init

open /proc
new_inode_op=proc_inode->i_op;
orig_proc_lookup = new_inode_op->lookup;
new_inode_op->lookup = adore_lookup;

end function
/*ava*/
process hiding

execve ava ;
adore_hideproc;
adore_lookup;

fuction adore_hideproc
 close(open(buf));
end function
function adore_lookup
 current->flags |= PF_AUTH;
 if current->flags == PF_AUTH

hide_process;
 endif
end function

LKM hiding behavior

fops modified
behavior

task_struct modi-
fied behavior

16

to hide malicious LKM: List_del(&__this_module->list).
Fig. 2 shows the attacking process for Adore-ng to hide

processes. LKM hiding behavior is a transient attacking be-
havior. First, it uses system call init_module to load itself, and
then deletes the list head from LKM list after a quite short
time. The malicious behavior pattern is {<init_module, <mod-
ule_list_head, l(module_list_head), write> > within 100 },
where 100 means the number of events trapping into VMM
between module loading and module_list_head writing is less
than 100. In the following, we simplify this kind of behavior
patterns to be {init_module, <module_list_head,
l(module_list_head), write>} for the sake of succinct. The
integrity checking property is that if the LKM is deleted from
the linked list, the LKM code region should also be deleted
from kernel memory space.

Adore-ng attacks file operation functions in the loaded
kernel module, and then uses a user space process to notify
which process should be hidden. For fops modified behavior,
the attacking target is the function pointers in operation func-
tion table of the inode data structure. The behavior pattern is
{<proc_inode->fops, l(proc_inode->fops), write>}. The integ-
rity checking activity is that the operation function table of
inode that stores the function pointers should not be modified
during runtime.

In the task_struct modified behavior, the attacking targets
are dynamic kernel data structures in task_struct. The contents
of tast_struct describe the information of the process. Because
ava is a user space process to notice Adore-ng which process
should be hidden, the tampered task_struct in Adore-ng disap-
pears after the process terminates. The behavior pattern is {ex-
ec; open; close; <task_struct, l(task_struct), write>}, and the
integrity checking target is the flags in task_struct.

B. Kernel Invariants Extracting
In this section, we will describe kernel integrity which

means that kernel contents should not be modified in an unau-
thorized manner. The components in the kernel space can be
divided into immutable components and mutable components.
The immutable components contain kernel codes and static
kernel data. The mutable components refer to dynamic kernel
data including control-flow data and non-control data. Behav-
iorKI uses kernel data invariants [10] to describe the kernel
integrity property that should be satisfied during runtime. Be-
haviorKI defines a set of kernel invariants by automatically
analyzing kernel source codes and runtime snapshots of the
operating system.

Since the immutable components in kernel cannot be modi-
fied during runtime, the invariant property for immutable com-
ponents is that the hash value of their contents should be fixed.
We obtain the start and end address of kernel codes and critical
static data structures from System.map. Writing operations on
these data structures or code regions indicate that the integrity
of kernel is violated. Since writing on static regions should not
happen when systems run normally, it will not put much extra
performance overhead when BehaviorKI monitors the entire
region of kernel codes and read-only data.

For mutable components, one characteristic is that dynamic
kernel data structures are permitted to change [7]. Another one

is that some dynamic kernel data structures exist transiently.
An example of dynamic kernel data is the head of LKM list. It
is usually modified by rootkits to hide themselves immediately
after its module having been loaded. Because transient attack-
ing behaviors may happen between two detecting intervals, the
traditional passive monitors detecting memory at regular inter-
vals cannot detect them.

Data invariants [10] are proposed as specifications of data
structure integrity property that should not be violated during
runtime. They can be specified either by experts [28] or auto-
matic tools [24]. Control flow components are usually function
pointers storing the addresses of kernel function. Rootkits usu-
ally change these points to their own malicious ones. The in-
tegrity property is that the contents of control flow components
should point to an available location in the kernel code address
space. Dynamic non-control data structures store critical in-
formation and user identification data. Recently, researchers
realize that dynamic data integrity is very important to the se-
curity of computer system [21, 22]. Linked list structures, such
as the process lists and LKM lists, are typical dynamic non-
control data. These lists are modified when loading or unload-
ing processes and Linux kernel modules during system
runtime. One example is the list of processes, and there are two
lists of processes in Linux kernel. One list is the all-tasks list
that shows all the processes in the system. Another list is the
run-list used for scheduling processes during execution. The
invariant property of the list of processes is that tasks appear in
the run-list should also appear in the all-tasks list. Another
example is the LKM list. The operating system maintains a
linked list data structure which stores the list of loaded LKMs.
The invariant property of the LKM list is that once a LKM is
deleted from the LKM list, the LKM code region should also
be deleted from the memory space.

We generate kernel invariants automatically similar to Gi-
braltar [10]. First, we use variables in System.map as roots.
The type definitions of these variables are obtained by analyz-
ing Linux source code with CIL [30]. Second, BehaviorKI
extracts variables that are reaching from these roots. For ex-
ample, if the root is a C struct, all members in the struct will
be extracted by BehaviorKI. By using the type definitions of
their members extracted by CIL, BehaviorKI obtains the offset
of each member. Then BehaviorKI can obtain the virtual ad-
dress of these variables with the information in the Sys-
tem.map and the offsets. After translating virtual addresses to
machine addresses, we can capture values of the memory vari-
ables as a snapshot. BehaviorKI periodically captures the
snapshots and convert them into trace files. These trace files
are the input of Daikon [24]. With the trace files and type def-
initions, Daikon automatically generates kernel invariants with
its templates. For example, template x = const checks whether
the variable equals to a const. BehaviorKI selects those tem-
plates according to the system needs.

Some important structures, such as LKM list, cannot be
easily extract their invariant properties form Daikon. Behav-
iorKI will manually obtain their invariant properties.

17

C. Behavior Monitoring
In this section, we will describe how BehaviorKI intercept

events defined in the previous section. The methodology de-
scribed in this paper can be applicable to any VMM platforms
that support for privileged operation interceptions and memory
translations. As Xen hypervisor [17] is mature and open
sourced, we chose Xen to implement BehaviorKI. BehaviorKI
intercepts the basic events by leveraging hardware-assisted
virtualization technology. It collects the basic events and
matches them with the malicious behavior patterns at hypervi-
sor level. In this way, BehaviorKI will only launch integrity
checking when malicious behavior is detected rather than de-
tecting any basic event.

Register access operation is a privileged operation that can
be intercepted by hardware virtualization technology. The
guest state area in VMCS will control the access permissions
of guest registers. When register accessing events happen, VM
Exit will be triggered. Therefore, we can intercept register
access events from VM Exit reason field in VMCS.

To intercept memory access operations, BehaviorKI needs
to determine which pages should be monitored first. Behav-
iorKI monitors events writing to kernel immutable regions and
critical dynamic data structures. The virtual addresses of im-
portant data structures like process lists are extracted from the
System.map in guest kernel. With the structure information of
these data structures, BehaviorKI can reconstruct kernel data
structures in VMM by translating addresses from guest virtual
addresses to machine addresses. Second, BehaviorKI utilizes
EPT violation to intercept memory accessing events by re-
moving the readable or writable permission of the monitored
memory pages from the EPT entry. Once events are attempted
to read or wrote these pages, EPT violation is triggered, and
the CPU will trap into VMM to handle the EPT violation. Af-
ter having intercepted the access events, EPT violation handler
will recover these pages to be readable and writable to let the
instruction re-executes again. Finally, we remove the read and
write permission of the page again in preparation for intercept-
ing the next access to the page immediately after this instruc-
tion. To reset the permission, BehaviorKI switches the TF
(Trap Flag) on and enables trap debug in the exception bitmap
in EPT violation handler. Then CPU traps into VMM in the
next instruction. In the trap debug exception handler, Behav-
iorKI sets the permission of monitored pages to be inaccessi-
ble and remove TF flags to make the system run normally.

System call interceptions can be divided into software in-
terrupts and fast system calls according to the different ways
to implement system calls. To intercept software interrupts
based system calls, BehaviorKI stores the original interrupt
descriptor table entry of int 80, and then changes it to a pointer
indexing to a non-executable page. To intercept fast system
call, BehaviorKI sets the value of IA32_SYSENTER_EIP
MSR as a non-executable address. When a guest system at-
tempts to execute system calls, an EPT violation will be trig-
gered. BehaviorKI obtains the system call number and param-
eters in the relevant registers. After tracking system calls in-
formation, BehaviorKI recover the value of EIP register back

to the reserved original address. In this way, BehaviorKI simu-
lates jumping to normal entry function of system calls.

D. Integrity Checking
As mentioned before, if CPU traps into VMM frequently,

the performance overhead will increase. This kind of perfor-
mance overhead is cause by monitoring events. Another per-
formance bottleneck caused by integrity checking is related to
large scale of address translations between guest physical ad-
dresses and machine addresses by page walking. In order to
reduce performance overhead of integrity checking, Behavior-
KI tries to reduce integrity checking frequency. It solves this
problem by only trigger integrity checking when malicious
behavior happens. Once event sequences collected by Behavior
monitoring module are matched to a malicious behavior pat-
tern, integrity checking is invoked to verify whether the system
integrity is violated. As the integrity checking targets are on
Linux kernel layer while BehaviorKI is deployed on the hyper-
visor layer, we track the data structures of the checked invari-
ants from the operating system to the hypervisor.

BehaviorKI describes monitor rule of static kernel compo-
nents as <mem_op, static_kernel_component_invariant>. The
mem_op refers to <kernel_component, l, write>, where l
[component_start, component_end]. The component_start is
the start address, and component_ end is the end address of the
static component region in guest OS virtual address space. The
integrity property of static kernel components is that their con-
tents should not be modified anyway. We check the integrity of
static kernel components by evaluating whether the hash value
of memory region from component_start to component_end is
equal to a known good one.

To check integrity of dynamic kernel data, the behavior
monitoring module monitors and records sequences of basic
events. Due to the fact that integrity checking mechanism de-
ployed outside of guest kernel, it cannot easily access kernel
data and kernel context like the kernel does, which is the well-
known semantic gap problem [6]. With the structure infor-
mation of these data structures in guest, BehaviorKI recon-
structs kernel data structures in VMM by translating guest
virtual addresses to machine addresses.

IV. EXPERIMENT AND EVALUATION
In this section, we first describe the experiments. Then we

report the evaluation results of the integrity checking capability
and performance of our BehaviorKI prototype.

A. Experiment
In this section, we first introduce the experiment settings.

Then we describe three approaches compared in our experi-
ments. Lastly, we describe several publicly available Linux
rootkits that are used in our evaluations.

1) Context
Our BehaviorKI prototype has been implemented on the

Xen hypervisor with hardware-assisted virtualization. All ex-
periments were performed on Intel Core i7-4710MQ CPU with
2.5.0GHz and 8GB memory. The original Xen hypervisor is
4.4.0 version and the HVM guest OS is a 32-bit Linux 2.6.24

18

kernel. The virtualized guest was distributed with 2GB
memory and 1-core configuration.

2) Treatments
In our experiments, we compared BehaviorKI with snap-

shot-based and event-triggered approaches. We implemented
the snapshot-based and event-triggered approaches by our-
selves since there were no publicly available tools or projects.
We use following names to represent these three approaches.

 SnapCheck is the snapshot-based approach which conduct
integrity checking at regular intervals. For snapshot-based
methods, we conducted experiments at the intervals of
1ms, 10ms, 100ms and 1000ms.

 EventCheck is the event-triggered approach, where the
trigger events contain basic events described in section
. In the evaluation, we use a simple whitelist filter of basic
events to trigger integrity checking. The events consist of
CR register accessing events, all system calls events,
memory accessing events considering all static regions
and a dynamic region containing LKM. EventCheck500
means that 500 memory page translations are consumed
in each integrity checking. While EventCheck1000,
EventCheck1500, EventCheck2000 represent that the
number of page translations in event-triggered methods is
1000, 1500 and 2000 respectively. EventNoCheck repre-
sents experiment which monitored events as EventCheck
and BehaviorKI did, but EventNoCheck did not check
kernel integrity.

 BehaviorKI is our behavior-based approach that described
in previous sections. BehaviorKI- represents Behav-
iorKI checking 2610 invariants. BehaviorKI- repre-
sents BehaviorKI checking 24954 invariants.

3) Rootkits
Table shows the set of rootkits we used in our experi-

ments, as well as violated targets, malicious behavior patterns
and checking invariants. We select these three rootkits because
their attacked data structures cover kernel code, kernel static
data and kernel dynamic data. In addition, some of their mali-
cious behaviors and the attacked components are transient.

 Enyelkm is a kernel rootkit in the form of loadable kernel
module. It hides files, directories and processes by modifying

the entry function of system call instead of tampering the sys-
tem call table. The code of the hacked system call is patched to
redirect system call. One of the hacked system calls is getdents
which conceals directory entries. Enyelkm modifies the system
call read to block it return portions from files. Enyelkm also
modifies the system call kill is to get the root privilege. When
the Enyelkm module is loaded, it will use the LKM hiding
technique to conceal itself from the kernel. It will manipulate
linked list structure module->list to hide an entry in the LKM
list. Enyelkm will remove the existing entry from the list once
the malicious codes have been injected into the kernel memory
space.

Adore-ng is a LKM-based rootkit. As mentioned in previ-
ous section, Adore-ng uses the structure of file operations in
Virtual File System to hide files, processes and ports. It also
modifies the module->list structure to conceal itself as what
Enyelkm does.

Xingyiquan is also a LKM-based rootkit, it hides process-
es, files, directories, processes, network connections, as well as
adds backdoors. It hacks system call table to redirect system
calls.

B. Evaluation
In this section, we evaluated the detection capability and

performance of BehaviorKI compared with snapshot-based
methods and event-triggered methods. In our evaluation, we
conducted the experiments for 100 times to calculate rootkit
detected percentage and the average performance overhead.

1) Rootkit Detection Capability
In this evaluation, we compared rootkits detection capabil-

ity of BehaviorKI with snapshot-based methods and event-
triggered methods. We conducted Snapshot experiments with
intervals of 1ms, 10ms, 100ms and 1000ms and summarized
the attacked data into three categories in Table III. The first one
is static components including kernel code and static kernel
data structures e.g., system call table, operations of Virtual File
System (VFS). The second evaluation data in our experiments
is the contents in task_struct. The contents in task_struct be-
long to dynamic non-control flow components. The third eval-
uation data is the LKM list which is also a dynamic non-
control flow component.

TABLE II. ROOTKITS USED IN OUR EVALUATION

Rootkit Name Attacked Data Structure Behavior Pattern Kernel Invariant

Enyelkm content in system call function {{<idtr, read>; <idt, l(idt), read>}||< SYSENTER_EIP_MSR,
read>};< system_call_func , l(system_call_func), write>

invariant of system call entry function (kernel code invari-
ant)

module->list {init_module; <module_list_head, l(module_list_head), write> } LKM list invariant

Adore-ng 0.56 inode->i_ops

file->f_op

{<proc_inode->fops, l(proc_inode->fops), write>} inode operation functions control component invariant

task_struct->{flags, uid, …} {exec; open; close; <task_struct, l(task_struct), write>} task_struct dynamic data component invariant

module->list {init_module; <module_list_head, l(module_list_head), write> } LKM list invariant

xingyiquan system call table <syscall_table, l(syscall_table), write> static data invariant

module->list {init_module; <module_list_head, l(module_list_head), write> } LKM list invariant

19

Table III shows the results of the comparisons. Snapshot-
based methods with 1ms to 1000ms intervals, EventCheck and
BehaviorKI can detect 100% of static component violations.
For static components, SnapCheck, EventCheck and Behav-
iorKI can detect all integrity violation.

In the experiments of the second evaluation data, the violat-
ed task_struct existed only for a short period of time. Event-
Check and BehaviorKI both can detect all the violations to this
kind of kernel data. However, SnapCheck can detect 97% of
attacks at 1ms interval while it can only detect 15% at 100ms
interval. We can see that SnapCheck missed more attacks as
the interval increased.

In the third data evaluation, the lifetime of LKM list attack
was much shorter than task_struct attack. In Table III, we can
see that SnapCheck at 1ms interval still cannot detect that vio-
lation, but EventCheck and BehaviorKI can detected the viola-
tion in one hundred percent.

In conclusion, SnapCheck, EventCheck and BehaviorKI
can all detect static data violations. However, SnapCheck can-
not always detect transient data violations in all situations. The
detection performance of SnapCheck is effected by the living
duration of attacked targets and checking intervals. SnapCheck
could not detect transient dynamic data attacks with quite short
living duration, while EventCheck and BehaviorKI performed
well in detecting this kind of attacks. All these three methods
can detected violations of static components for these integrity
violations persist after being violated.

2) Runtime Performance
In order to evaluate the effectiveness of BehaviorKI in

terms of runtime performance, we compared the performance
overhead of BehaviorKI with EventCheck. We evaluated the
performance using the STREAM benchmark [29], which was
widely used for measuring the memory bandwidth of a com-
puter system. The evaluation was performed over four vector
operations: copy, scale, add and triad. We used the average
time to indicate the performance. The Copy function simply
moves data from one memory location to another. The Scale
function is similar to Copy, but it multiplies the value by a
constant before writing to the new location. The Add function
reads a value from one memory location, followed by a value
from another location. It adds the values and writes the results
to a third location. The Triad function combines the Scale and
Add function. We run the STREAM benchmark on the guest
VM. The performance of these approaches is compared with
the performance of Xen that does not deploy any events moni-
toring or integrity checking mechanisms. The performance
overhead of original unmodified Xen is 100%.

We conducted three comparisons to illustrate BehaviorKI
runtime performance as follows.

a) Performance overhead compared with event-
triggered methods

First, we compared the performance of BehaviorKI with
EventCheck. As we mentioned before, the performance over-
head of EventCheck and BehaviorKI is composed of perfor-
mance overhead of events monitoring and performance over-
head of integrity checking. In our approach, we only consider
the decline of performance overhead caused by integrity check-
ing. We introduced EventNoCheck to illustrate performance
overhead of events monitoring. Since EventNoCheck only in-
tercepted events but not triggered integrity checking, extra per-
formance overhead compared with EventNoCheck was due to
integrity checking. As each variable in the invariants requires a
page address translation, large numbers of invariants checking
will increase performance overhead of EventCheck significant-

TABLE IV. CHECKING FREQUENCY AND PERFORMANCE OVERHEAD OF
INTEGRITY CHECKING

 Snapshot
1ms

EventCheck BehaviorKI

Integrity checking
overhead

16.12% 58.10% 1.36%

Integrity checking
frequency (times/s)

1000 1558 97

TABLE III. ROOTKITS DETECTION RATE AGAINST 100 TRIALS OF RECURRING ATTACKS

Data Type Snapshot 1000ms Snapshot 100ms Snapshot 10ms Snapshot 1ms EventCheck BehaviorKI

static components 100% 100% 100% 100% 100% 100%

task_structs contents 0% 15% 88% 97% 100% 100%

LKM list 0% 0% 0% 0% 100% 100%

Fig. 3. Performance degradation of BehaviorKI and EventCheck comparing
with system running on unmodified Xen. The performance overhead of
unmodified Xen is 100%

20

ly. In this group of experiments, we automatically extracted
kernel 2610 invariants with the template x = const.

The results of performance degradation for EventCheck and
BehaviorKI are shown in Fig. 3. EventCheck has 71.91% per-
formance overhead while BehaviorKI has 15.17%. Compared
with EventCheck, BehaviorKI reduces 56.74% performance
overhead. The results of EventNoCheck show that events mon-
itoring increases 13.81% performance overhead. Since both
EventCheck and BehaviorKI need to intercept events, extra
performance overhead comparing with EventNoCheck was
caused by integrity checking. Then the comparative perfor-
mance overhead of integrity checking after reducing the inevi-
table 13.81% performance overhead is 58.10% for EventCheck
and 1.36% for BehaviorKI. Comparing with EventCheck, Be-
haviorKI significantly declines the performance overhead of
integrity checking.

To illustrate reasons of performance overhead degradation
of BehaviorKI, we evaluated the integrity checking frequency
and performance overhead of integrity checking. In Table IV,
Snapshot-based method with 1ms intervals triggers integrity
checking 1000 times per second. It takes 16.12% extra perfor-
mance overhead caused by integrity checking. EventCheck
triggers 1558 times of integrity checking per second, while
BehaviorKI only triggers 97 per second. Compared with
EventCheck, the integrity checking frequency of BehaviorKI is
much lower. This is the reason that BehaviorKI can degrade
performance overhead significantly compared with Event-
Check. Table IV shows that when the integrity checking fre-
quency become higher, the performance overhead of integrity
checking increases.

b) Performance bottleneck of event-triggered methods
with different page translation frequency

In this group of experiments, we compare the performance
of EventCheck with different page translation frequency to
analyze the performance bottleneck of event-triggered meth-
ods. To illustrate the relation between performance overhead
and the frequency of memory page translations, we conducted
experiments based on event-triggered methods with different
page translation frequencies. We conducted experiments of

EventCheck which need 500, 1000, 1500 and 2000 page trans-
lations.

Fig. 4 shows the comparison results about extra perfor-
mance overhead of integrity checking among different numbers
of page translations. The performance overhead of integrity
checking is the extra performance overhead comparing with
EventNoCheck. Integrity checking performance overhead of
EventCheck500 is only 4.07%, and the performance overhead
increases with more memory page translations in integrity
checking. EventCheck involving 2000 memory page transla-
tions has 40.94% extra performance overhead, which is a high
consumption. Such high consumption mainly due to the EPT
walking which translates guest virtual addresses to machine
addresses during memory integrity checking. Large scale of
translations will increase performance overhead significantly.
Since each variable in an invariant needs one page translation,
event-triggered methods cannot burden large numbers of invar-
iants in integrity checking for high performance overhead.

c) Performance overhead under large numbers of
invariants

Lastly, we compared the performance of BehaviorKI with
large numbers of invariants. To investigate the effectiveness of
our approach with large numbers of invariants, we extracted
24954 invariants with more templates in Daikon [24]. Among
these invariants, 2610 invariants were in form of x = const,
while 22344 invariants contained two variables like varia-
bleA > variableB.

In Fig. 5, BehaviorKI- represents BehaviorKI with
2610 invariants, while Behavior- represents BehaviorKI
with 24954 invariants. As each variable in invariants need one
page translation, checking integrity of Behavior-25k required
nearly 50000 page translations for one time. The results show
that BehaviorKI cost 3.08% extra performance overhead for
integrity checking with 24954 invariants. While the perfor-
mance overhead of integrity checking with 2610 invariants is
1.36%. BehaviorKI did not cost much performance with large
numbers of invariants.

Fig. 4. Extra performance overhead of integrity checking with varied
numbers of page translations compared with EventNoCheck

Fig. 5. Performance degradation of BehaviorKI comparing with system
running on unmodified Xen. The performance overhead of unmodified Xen is
100%

21

V. DISSCUSSION
The results show that snapshot-based methods could not

detect all kernel integrity violations caused by transient attacks,
especially those have quite short living duration. While Snap-
Check with shorter snapshot intervals increases the perfor-
mance overhead heavily. EventCheck and BehaviorKI both
need to intercept events, which cause CPU trapped into VMM
and increase performance overhead. But both of these two
methods can detect transient attacks even their living duration
is quite short. By introducing BehaviorKI, it filtered unneces-
sary triggers to checking kernel integrity. According to our
evaluation results, BehaviorKI can reduce 56.74% performance
overhead with the same detection capability as EventCheck.

The results show that intercepting events and integrity
checking could both increase performance overhead. Since
EventCheck and BehaviorKI have to intercept the same set of
events, their performance overhead caused by intercepting
events is the same. This part of performance overhead is neces-
sary for checking transient attacks. We only consider how to
reduce performance overhead caused by integrity checking in
this paper. Performance overhead of integrity checking is rele-
vant to checking frequency and the memory pages translation
frequency involved in integrity checking. BehaviorKI reduces
checking frequency by filtering irrelevant event trapping ac-
cording to malicious behavior patterns. In conclusion, Behav-
iorKI can detect transient attacks comparing with SnapCheck,
and introduced lower performance overhead caused by integri-
ty checking than EventCheck.

In our experiments, we automatically extracts 2610 invari-
ants with a certain template x = const to compare performance
overhead with event-triggered methods. However, practicable
integrity checking system needs large numbers of data invari-
ants with more templates to describe kernel integrity. For per-
formance overhead increases heavily, event-triggered methods
cannot be used on VMM with large numbers of invariants. Fig.
5 shows that BehaviorKI can deal with large numbers of invar-
iants with only 3.08% extra performance overhead of integrity
checking.

Event-triggered integrity checking methods typically have
performance overhead problem since they will trigger unneces-
sary kernel integrity checking on normal events. BehaviorKI
can alleviate that problem by triggering integrity checking only
when the event sequences match with malicious behavior pat-
terns. Therefore, BehaviorKI has lower performance overhead
on integrity checking compared to event-triggered methods.
The basic events considered in BehaviorKI are listed in section

. With more events we didn’t consider in this paper, the per-
formance overhead of event-triggered methods will increase
more heavily than BehaviorKI. There are still some other basic
events that we do not consider in this paper, such as I/O-related
events. With more events that we did not consider in the evalu-
ation, the performance overhead of event-triggered methods
would increase more heavily than BehaviorKI.

VI. LIMITATIONS AND FUTURE WORKS
In this section, we discuss the limitations and the future

works.

A. Memory accessing monitoring
In our implemented prototype, BehaviorKI cannot intercept

memory access operations on large regions of mutable
memory. This is because frequent accesses to mutable memory
will cause large numbers of VM exits for EPT violation. High
frequency of VMM trapping may lead to system crashing. In
our future work, we plan to monitor large scale of memory
accessing events, while the system can tolerate performance
overhead at the same time. We will also try to reduce unneces-
sary interceptions of memory access operation by precisely
locating the monitored regions.

B. Behavior patterns generation
BehaviorKI is a behavior-based approach. The more mali-

cious behavior patterns are established, the more effective the
approach will be. In our prototype, the malicious behavior pat-
terns have been extracted and modeled based on expert’s expe-
rience when analyzing historical attack processes. In the exper-
iment, we only considered three typical rootkits to evaluate the
performance of our approach. The results showed that Behav-
iorKI can get good performance. When including more rootkits,
we believe the proposed approach can outperform snapshot-
based methods and event-triggered methods too. In addition, in
our future work, we will elaborate and improve our behavior
pattern modeling to provide an automatic approach. The ap-
proach can mine and generate new malicious behavior patterns
when unknown rootkits appear.

VII. RELATED WORK
Many researchers contribute to kernel integrity checking of

the operating system. BehaviorKI was inspired by behavior
model in intrusion detection systems. We briefly describe our
related works as follows.

A. Integrity Checking
Integrity checking mechanisms are deployed on kernel

space at an early stage of researches. IMA [11] is an integrity
measurement system that extents TCG trust measurement con-
cepts to dynamic executable contents from BIOS up into the
application layer. IMA relies on hardware TPM (Trusted Plat-
form Module) and Linux kernel to do integrity measurement.

As the hardware-assisted virtualization technology devel-
ops and VMM-based introspections [23] are proposed, people
deploy kernel integrity checking and monitoring mechanisms
on hypervisors. Para-virtualized methods have to modify kernel
device drivers, while hardware-based full virtualization tech-
nologies do not need to modify the kernel which runs transpar-
ently. VMM-based approaches can be categorized by the type
of protected contents. Secvisor [8] and Pioneer [18] guarantee
kernel code integrity from modification and illegal execution.
However, only guaranteeing code integrity cannot prevent at-
tacks that control program behavior without modifying the
code. Control-Flow Integrity (CFI) [20] is proposed to deal the
issue that rootkits attack control flow of kernel without inject-
ing malicious code. Besides, researchers realize that data integ-
rity is also crucial to the security of computer system [21, 22].
Gibraltar [10] introduces data invariants to specify kernel data
structure integrity, it automatically infers and enforces specifi-

22

cations of kernel data structure integrity. DADE [31] optimizes
kernel data invariants generation and only check data invariants
on dirty memory pages. KernelGuard [7] uses a watchpoint to
monitor the location of dynamic data changing, and
memoryguard is proposed to ensure the accesses to critical
memory regions are caused by illegal functions.

B. Event-triggered Monitoring
Before event-triggered approaches are proposed, research-

ers use passive technologies to monitor the target system at
intervals. Copilot [1] and Gbrattar [10] obtain snapshots of
kernel memory to check kernel integrity violations via an ex-
ternal peripheral device. Petroni describes SBCFI [2] which
performs periodic scans of the kernel memory. However, these
methods cannot detect transient attacks and frequent monitor-
ing will increase the performance overhead significantly.

Active monitor of kernel data has been proposed to address
transient attacks, they use event-triggered techniques to do this.
KernelGuard [7] uses VMM-based memory access monitor to
prevent malicious memory accesses on protected kernel data
actively. OSck [5] utilizes event-triggered method to monitor
static regions of the kernel. HyperTap [4] defines four kinds of
events to trigger memory monitor based on hardware-assistant
virtualization. KI-Mon [3] proposes a hardware-assisted event-
triggered monitoring platform for mutable kernel object. It uti-
lizes a whitelist filter to eliminate unnecessary software in-
volvement in value verification. However these approaches use
events to trigger memory monitoring without considering its
context and basic events do not have enough sematic to trigger
integrity checking. In this way it still contains lots of irrelevant
events that lead to unnecessary kernel integrity checking and
will still have performance problem. BehaviorKI proposed in
this paper tried to consider event context and filter irrelevant
trigger events.

C. Malware Behavior Model
In the researches of intrusion detection system, large num-

bers of works use behavior models to characterize benign be-
haviors and malware behaviors. A general method is to use
system call sequences and their arguments to characterize the
features of malicious software and benign software separately
[6, 9, 25]. Some researchers use graph-based models of system
calls to describe the system behavior [27]. Recently, Rhee et al
[26] use memory access patterns to characterize the behaviors
and this method does not rely on temporal control information.
Zhixing et al [32] use machine learning to analyze virtual
memory access. However, malware detections with intrusion
detection technology have great false positives. In our work,
we introduce malware behavior model in intrusion detection to
describe malicious behavior in integrity checking system. By
using malicious behavior to trigger kernel integrity checking,
BehaviorKI eliminated unnecessary events that trigger kernel
integrity checking.

VIII. CONCLUSION
In this paper, we introduced BehaviorKI which is a novel

behavior-triggered kernel integrity checking technology. Be-
haviorKI uses behavior patterns to identify malicious behavior.

When malicious behavior is detected, BehaviorKI will trigger
integrity checking of kernel invariants. BehaviorKI can reduce
integrity checking performance overhead by filter unnecessary
triggering events. Our experiments showed that BehaviorKI
was able to detect all integrity violations, while snapshot-based
methods missed some integrity violations on dynamic data
structures. BehaviorKI outperformed event-triggered methods
by reducing 56.74% performance overhead with 2610 invari-
ants and can deal with large numbers of invariants checking.

ACKNOWLEDGMENT
We would like to thank the anonymous reviewers for their

insightful comments. This work is supported by National Natu-
ral Science Foundation of China under Grant No. 61432001,
and Core Electronic Devices, High-end Generic Chips and
Fundamental Software Program under Grant No.
2014ZX01029101-002.

REFERENCES

[1] N. L. Petroni, Jr., T. Fraser, J. Molina and W. A. Arbaugh, “Copilot - a
coprocessor-based kernel runtime integrity monitor,” In Proceedings of
the 13th USENIX Security Symposium, Berkeley, CA, 2004, pp. 179-
194.

[2] N. L. Petroni, Jr. and M. Hicks, “Automated detection of persistent
kernel control-flow attacks,” In Proceedings of the 14th ACM
conference on Computer and communications security (CCS '07), New
York, NY, USA, 2007, pp. 103-115.

[3] H. Lee, H. Moon, D. Jang, K. Kim, J. Lee, Y. Paek and Brent
ByungHoon Kang, “KI-Mon: a hardware-assisted event-triggered
monitoring platform for mutable kernel object,” In Proceedings of the
22nd USENIX conference on Security (SEC'13), Berkeley, CA, USA,
2013, pp. 511-526.

[4] C. Pham, Z. Estrada, P. Cao, Z. Kalbarczyk and R. K. Iyer, “Reliability
and Security Monitoring of Virtual Machines Using Hardware
Architectural Invariants,” 2014 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, Atlanta, GA, 2014,
pp. 13-24.

[5] O. S. Hofmann, A. M. Dunn, S. Kim, I. Roy and E. Witchel, “Ensuring
operating system kernel integrity with OSck,” In Proceedings of the
sixteenth international conference on Architectural support for
programming languages and operating systems (ASPLOS XVI), New
York, NY, USA, 2009, pp. 279-290.

[6] B. Jain, M. B. Baig, D. Zhang, D. E. Porter and R. Sion, “SoK:
Introspections on Trust and the Semantic Gap,” 2014 IEEE Symposium
on Security and Privacy, San Jose, CA, 2014, pp. 605-620.

[7] J. Rhee, R. Riley, D. Xu and X. Jiang, “Defeating Dynamic Data Kernel
Rootkit Attacks via VMM-Based Guest-Transparent Monitoring,”
Availability, Reliability and Security, 2009. ARES '09. International
Conference on, Fukuoka, 2009, pp. 74-81.

[8] A. Seshadri, M. Luk, N. Qu and A. Perrig, “SecVisor: a tiny hypervisor
to provide lifetime kernel code integrity for commodity OSes,” In
Proceedings of twenty-first ACM SIGOPS symposium on Operating
systems principles (SOSP '07), New York, NY, USA, 2007, pp. 335-
350.

[9] F. Maggi, M. Matteucci and S. Zanero, “Detecting Intrusions through
System Call Sequence and Argument Analysis,” in IEEE Transactions
on Dependable and Secure Computing, vol. 7, no. 4, pp. 381-395, Oct.-
Dec. 2010.

23

[10] A. Baliga, V. Ganapathy and L. Iftode, “Automatic Inference and
Enforcement of Kernel Data Structure Invariants,” Computer Security
Applications Conference, 2008. ACSAC 2008. Annual, Anaheim, CA,
2008, pp. 77-86.

[11] R. Sailer, X. Zhang, T. Jaeger and L. van Doorn, “Design and
implementation of a TCG-based integrity measurement architecture,” In
Proceedings of the 13th conference on USENIX Security Symposium,
Berkeley, CA, USA, 2004, pp. 223-238.

[12] Intel I. and IA-32 Architectures Software Developer’s Manual [J].
Volume 3A: System Programming Guide, Part, 64, 1.

[13] J. Gandhi, A. Basu, M. D. Hill and M. M. Swift, "Efficient Memory
Virtualization: Reducing Dimensionality of Nested Page Walks," 2014
47th Annual IEEE/ACM International Symposium on Microarchitecture,
Cambridge, 2014, pp. 178-189.

[14] Intel Corporation, Intel Xeon Processor E7 V2 Family Technical
Overview, https://software.intel.com/en-us/articles/intel-xeon-processor-
e7-v2-family-technical-overview.

[15] H. Moon, H. Lee, J. Lee, K. Kim, Y. Paek and B. B. Kang, “Vigilare:
toward snoop-based kernel integrity monitor,” In Proceedings of the
2012 ACM conference on Computer and communications security (CCS
'12), New York, NY, USA, 2012, pp. 28-37.

[16] A. Vasudevan, S. Chaki, L. Jia, J. McCune, J. Newsome and A. Datta,
“Design, Implementation and Verification of an eXtensible and Modular
Hypervisor Framework,” Security and Privacy (SP), 2013 IEEE
Symposium on, Berkeley, CA, 2013, pp. 430-444.

[17] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt and A. Warfield, “Xen and the art of virtualization,”
In Proceedings of the nineteenth ACM symposium on Operating systems
principles (SOSP '03), New York, NY, USA, 2003, pp. 164-177.

[18] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. V. Doorn and P. Khosla,
“Pioneer: verifying code integrity and enforcing untampered code
execution on legacy systems,” In Proceedings of the twentieth ACM
symposium on Operating systems principles (SOSP '05), New York,
NY, USA, 2005, pp. 1-16.

[19] T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote, S. Hasegawa, T.
Horie, M. Hirano, K. Kourai, Y. Oyama, E. Kawai, K. Kono, S. Chiba,
Y. Shinjo and K. Kato, “BitVisor: a thin hypervisor for enforcing i/o
device security,” In Proceedings of the 2009 ACM SIGPLAN/SIGOPS
international conference on Virtual execution environments (VEE '09),
New York, NY, USA, 2009, pp.121-130.

[20] M. Abadi, M. Budiu, Ú. Erlingsson and Ja. Ligatti, “Control-flow
integrity,” In Proceedings of the 12th ACM conference on Computer and
communications security (CCS '05), New York, NY, USA, 2005, pp.
340-353.

[21] A. Baliga, P. Kamat and L. Iftode, “Lurking in the Shadows: Identifying
Systemic Threats to Kernel Data,” 2007 IEEE Symposium on Security
and Privacy (SP '07), Berkeley, CA, 2007, pp. 246-251.

[22] S. Chen, J. Xu, E. C. Sezer, P. Gauriar and R. K. Iyer, “Non-control-data
attacks are realistic threats,” In Proceedings of the 14th conference on
USENIX Security Symposium, Berkeley, CA, USA, 2005.

[23] T. Garfinkel and M. Rosenblum, “A Virtual Machine Introspection
Based Architecture for Intrusion Detection,” In Proceedings of the 10th
Symposium on Network and Distributed System Security (NDSS '03),
2003, pp. 191-206.

[24] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz and C. Xiao, “The Daikon system for dynamic detection of
likely invariants,” Sci. Comput. Program. 69, 1-3, pp. 35-45, 2007.

[25] H. Shimada and T. Nakajima, “Automatically Generating External OS
Kernel Integrity Checkers for Detecting Hidden Rootkits,” Ubiquitous
Intelligence and Computing, 2014 IEEE 11th Intl Conf on and IEEE
11th Intl Conf on and Autonomic and Trusted Computing, and IEEE
14th Intl Conf on Scalable Computing and Communications and Its
Associated Workshops (UTC-ATC-ScalCom), Bali, 2014, pp. 441-448.

[26] J. Rhee, Z. Lin and D. Xu, “Characterizing kernel malware behavior
with kernel data access patterns,” In Proceedings of the 6th ACM
Symposium on Information, Computer and Communications Security
(ASIACCS '11), New York, NY, USA, 2011, pp. 207-216.

[27] C. Kolbitsch, P. Milani Comparetti, C. Kruegel, E. Kirda, X. Zhou and
X. Wang, “Effective and efficient malware detection at the end host,” In
Proceedings of the 18th conference on USENIX security symposium
(SSYM'09), Berkeley, CA, USA, 2009, pp. 351-366.

[28] N. L. Petroni, Jr., T. Fraser, A. Walters and W. A. Arbaugh, “An
architecture for specification-based detection of semantic integrity
violations in kernel dynamic data,” In Proceedings of the 15th
conference on USENIX Security Symposium (USENIX-SS'06),
Berkeley, CA, USA, pp. 289-304.

[29] J. D. McCalpin, “Memory bandwidth and machine balance in current
high performance computers,” IEEE Computer Society Technical
Committee on Computer Architecture (TCCA) Newsletter, 1995, pp. 19-
25.

[30] G. C. Necula, S. McPeak, S. P. Rahul and W. Weimeret, “CIL:
Intermediate language and tools for analysis and transformation of C
programs,” International Conference on Compiler Construction,
Springer, Heidelberg, Berlin, 2002, pp. 209-265.

[31] H. Yi, Y. Cho, Y. Paek and K. Ko “DADE: a fast data anomaly
detection engine for kernel integrity monitoring,” The Journal of
Supercomputing, 2017, pp. 1-26.

[32] Z. Xu, S. Ray, P. Subramanyan and S. Malik, “Malware detection using
machine learning based analysis of virtual memory access patterns,”
Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2017, Lausanne, 2017, pp. 169-174.

[33] R. Love, Linux Kernel Development. Novell Press, 2005.
[34] Intel Virtualization Technology Processor Virtualization Extensions and

Intel Trusted execution Technology,
https://software.intel.com/sites/default/files/m/0/2/1/b/b/1024-
Virtualization.pdf

[35] B. Kauer, “OSLO: Improving the Security of Trusted Computing,”
USENIX Security Symposium, 2007, pp. 229-237.

24

