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Abstract—Kernel rootkits pose a serious threat to system se-

curity by tampering with the state of operating system inconspic-
uously. To ensure operating system kernel integrity, Virtual Ma-
chine Monitor (VMM) based approaches have been proposed. 
Most of these approaches use snapshot-based or event-triggered 
techniques. However, snapshot-based techniques have been suf-
fering from missing transient attacks or significant performance 
overhead, while event-triggered methods are facing with heavy 
workload as integrity checking might be triggered by any suspi-
cious actions.  

In this paper, we propose a novel solution which is a behav-
ior-triggered integrity checking approach named BehaviorKI. By 
analyzing attacking processes, BehaviorKI can extract a set of 
behavior patterns which characterize malicious behaviors. Be-
haviorKI will trigger integrity checking with kernel invariants 
when a malicious behavior pattern detected. In this way, our 
approach can alleviate the performance burden by reducing the 
frequent kernel integrity checking. The experiment results show 
that BehaviorKI outperforms existing snapshot-based and event-
triggered approaches. 

Keywords-Behavior Patterns; Kernel Integrity Checking; 
Kernel Rootkit Analysis 

I.  INTRODUCTION  
Kernel rootkits are malwares that subvert the security of the 

machine and cause malicious functions to be executed. They 
can load themselves in the highest privilege level, as well as 
hiding from the traditional antivirus software. Kernel rootkits 
usually attack kernel code and data structures during runtime 
by deceiving the detecting and protecting mechanisms running 
on the kernel layer or application layer. Many researches [4, 5, 
7, 8] address this issue by adding the detecting and protecting 
mechanisms in the Virtual Machine Monitor (VMM) layer 
which is considered as a safe execution environment. When 
deploying rootkits detecting mechanisms on the VMM layer, 
they take the advantages of hardware-assisted virtualization 
technology to intercept system events and track system states. 
They cannot be perceived and destroyed by rootkits deployed 
on operating system. 

The integrity of a program is a binary property that indi-
cates whether the program and/or its environment have been 
modified in an unauthorized manner [11]. The integrity [20] of 
operating system refers to that the operating system should run 
as expected, instead of being modified by rootkits. Integrity 
checking will inspect whether the critical components in oper-

ating system are modified illegally, including static compo-
nents and dynamic components. 

In order to check whether there are rootkits that threaten 
kernel integrity during runtime, Copilot [1] and SBCFI [2] pre-
sent snapshot-based solutions, which monitor kernel states by 
periodically executing monitor processes and comparing the 
collected snapshots of memory contents of the kernel static 
regions. Recently, researchers realize that dynamic data integri-
ty is also crucial to the security of computer system for modern 
rootkit used dynamic data as their attacking target [21, 22]. 
Gibraltar [10] introduced data invariants to define kernel data 
integrity and checked those data invariants at regular intervals. 
However, the transient rootkits are likely to be missed if they 
finish the attacking between two snapshots. One way to deal 
with this situation is increasing the frequency of snapshots. 
However, it will increase performance overhead significantly 
[15].  

To detect transient rootkits and reduce performance over-
head, event-triggered monitoring techniques are proposed. The 
trigging events include hypercall interception, page fault inter-
ception [4, 5], and etc. However, once some registered event 
occurs, an integrity checking will be triggered without consid-
ering the event context. As a result, there will be too many 
trigging events that are irrelevant to kernel integrity violation. 
For example, a writing operation to the particular regions of 
memory will trigger an unnecessary integrity checking, and 
thus reduces system performance. To reduce performance 
overhead of monitoring memory access, some researches [3, 
23] only trap events that imply definite misuse. KI-Mon [3] 
uses a whitelist-based filter to avoid unnecessary kernel integri-
ty checking. But essentially, these approaches do not consider 
the context when events occurred. 

The goal of our work is to reduce kernel integrity checking 
overhead while ensuring the checking efficiency. Behavior 
models have been widely used in traditional intrusion detection 
technologies to monitor malicious behavior [6, 9, 16]. The 
basic idea of BehaviorKI is to characterize malicious behavior 
by behavior model, and use malicious behavior to capture po-
tential events that may destroy kernel integrity. In this way, 
BehaviorKI filters unnecessary kernel integrity checking with 
events context. It will reduce the frequency of kernel integrity 
checking and relieve system overload. 

In our approach, we propose BehaviorKI, a novel integrity 
checking system based on behavior-trigger method. Behavior-
KI introduces behavior patterns to decide when to trigger nec-
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essary kernel integrity checking. Once malicious behaviors are 
detected, BehaviorKI will trigger to check kernel data invari-
ants to verify whether kernel integrity has been tampered. Data 
invariants [10, 24] are used to describe the integrity property of 
critical data structures. The integrity property should be kept all 
the time, and violations of integrity property indicate that the 
system has been attacked by rootkits directly or indirectly.  

We implement the BehaviorKI prototype on Xen hypervi-
sor [17] which is an open-source hypervisor-based environ-
ment. We evaluated the effectiveness of BehaviorKI with ex-
periments. In our experiments, we compared BehaviorKI with 
snapshot-based methods at 1ms, 10ms, 100ms and 1000ms 
intervals. To illustrate the decline of performance overhead, we 
compared BehaviorKI and event-triggered methods with 2610 
kernel invariants. At last, we did experiment of BehaviorKI 
with 24954 invariants to illustrate that our approach can per-
form well with large numbers of invariants. We use the 
STREAM benchmark [29] to measure the performance cost on 
memory bandwidth of the monitored system. The results show 
that performance overhead of integrity checking is positively 
correlated with the frequency of integrity checking and the 
scale of checking contents. In our evaluation, BehaviorKI can 
detect transient attacks that missed by snapshot-based method. 
Comparing with event-triggered methods, BehaviorKI reduces 
performance overhead with lower integrity checking frequency 
and can detect the same number of rootkits in our experiments 

In this paper, we make the following contributions: 

 We model the malicious behaviors with behavior pat-
terns by extracting frequent event sequences from 
historical attacks. Those patterns can be used to de-
tect future integrity violations.  

 We propose a novel approach based on the identified 
malicious behavior patterns to trigger kernel integri-
ty check, which can reduce performance overhead 
by reducing the frequency of integrity check. It trig-
gers the integrity check only when identified mali-
cious behaviors pattern occurs. 

 We implement the prototype of BehaviorKI based on 
hardware-assisted virtualization technology and an 
open sourced virtualization platform Xen. It is port-
able to other VMM-based platforms that support 
hardware-assisted virtualization. 

 We conduct experiments to evaluate the effectiveness 
of our approach. The results show that BehaviorKI 
can detect more dynamic data integrity violations 
than snapshot-based methods and outperform event-
triggered methods in performance overhead. 

The remainder of the paper is organized as follows. Sec-
tion II presents some background. Section  describes our 
design of BehaviorKI. We evaluate BehaviorKI deployed on 
Xen in section , discuss the results and future works in sec-
tion  and . We describe the relative works in section  
and conclude in section . 

II. BACKGROUND 
In this section, we describe the background of hardware-

assisted virtualization and the performance problem of integrity 
checking with hardware-assisted virtualization firstly. Then, we 
describe the thread model and our assumptions. 

A. Hardware-assisted Virtualization 
In order to monitor behaviors and measure the integrity of 

operating system in the privileged level, we utilize hardware-
assisted virtualization (HAV), which supports unmodified 
guest OS with small performance overhead. In this paper we 
use Intel virtualization technology VT-x [34]. 

To support CPU virtualization, VT-x provides two mode: 
VMX (Virtual-Machine eXtension) root mode and non-root 
mode. The two mode can switch between each other through a 
set of instructions as VM Exit and VM Entry. Once a privi-
leged instruction is executed in the VMX non-root mode, pro-
cessor control switches to the root mode through the VM exit 
instruction. After the hypervisor in root mode takes certain 
actions to handle VM exit, it switches back to virtual machine 
through the VM entry instruction [12]. 

Extended Page Table (EPT) is designed for virtualizing 
Memory Management Unit (MMU) with hardware. MMU is 
used for translating guest virtual addresses to guest physical 
addresses. Guest virtual address is the virtual address used by 
guest OS, Guest physical address is the physical memory ad-
dress of guest VM. When EPT is enabled, guest physical ad-
dresses are translated to real machine addresses by traversing a 
set of EPT page structures. EPT can also specify the privileges 
of software when they access the address, e.g., read, write and 
execute. Any attempts that access disallowed memory will 
trigger EPT violations, and then cause VM exits [12]. 

B. Performance Overhead Problem 
When we use technology of hardware-assisted virtualiza-

tion, many events could cause the guest VM trapping into 
VMM. When these events trigger VM exit, they will cause a 
penalty of 2000 to 7000 CPU cycles approximately [14]. This 
is one of the reasons why virtualizations increase performance 
overhead. Moreover, the usage of EPT technology will increase 
the burden of this kind of performance overhead. By setting 
appropriate access permission to monitored pages, EPT tech-
nology can monitor the memory access events. It will trigger 
VM exit if there exits any access to the specific pages. Monitor 
events will cause the VM trapped into VMM frequently in con-
sequent.  

Besides VM trapping, memory addresses translation from 
virtual addresses to machine addresses is another reason that 
increases performance overhead. The hardware will first search 
for memory pages from translation lookaside buffer (TLB), 
which cache the most recently used page table entries. If the 
pages are not found, the hardware will trigger a 2D page walk 
which is a long latency operation to fetch the virtual-to-
machine mapping [13]. Such 2D page walk will cause the per-
formance overload significantly. When we check the kernel 
integrity in VMM level, we have to reconstruct the data struc-
tures from operating system memory space to VMM via 
memory address translations. It will increase performance 
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overhead significantly, especially when the scale of translations 
is large. Our work will try to reduce this part of performance 
overhead by reducing the frequency of integrity checking. 

C. Threat Model 
In our work, we focus on attacks that exploit kernel-level 

vulnerabilities instead of hardware-level vulnerabilities such as 
vulnerabilities in CPU, memory controller, system memory 
chips and system bus. These attacks consists of transient at-
tacks which have shot living duration in memory and persistent 
attacks. Besides, hardware attacks and attackers whose target is 
the hypervisor are not considered in this work. The primary 
threat that BehaviorKI try to avert is kernel rootkits. Kernel 
rootkits have privileges on operating system kernel and try to 
mask their presences. These rootkits can modify both static and 
dynamic kernel components to achieve their attacking goals. 
Instead of preventing these types of attacks from violating the 
integrity of operating system kernel, BehaviorKI only detect 
whether the integrity of operating system is violated in an un-
authorized manner. Data privacy is out of our study scope. 

D. Assumptions 
There are two assumptions we set in our approach. 

1) We assume that the underlying hardware and hypervisor 
can be trusted, as assumed by most virtualization security ar-
chitectures [4, 30]. Some researchers even proved the trust of 
tiny trusty hypervisors with formal methods, such as XMHF 
[16] and BitVisor [19]. Our approach only relies on hardware 
virtualization technology and can be applicable on these hyper-
visors. 

2) We assume that the kernel integrity will not be attacked 
during booting time. BehaviorKI that starts kernel integrity 
checking after the operating system booting and reaching a 
stable state. This is because the kernel code and data structures 
change significantly during the system initialization, and there 
already exists mature technologies, such as secure boot [35], to 
ensure kernel integrity before being loaded. 

III. OUR APPROACH: BEHAVIORKI 
BehaviorKI is a behavior-pattern based integrity checking 

system. It launches the integrity checking when malicious be-
havior is detected. BehaviorKI is designed in hypervisor level 
to be totally transparent to the monitored operating system 
without modifying the operating system kernel. In order to 
monitor the states of operating system and check the kernel 
integrity without interference from kernel rootkits, BehaviorKI 
requires a higher level authority to access the states and 
memory of the kernel. The goal of BehaviorKI is to reduce the 
performance overhead when checking integrity. By filtering 
out events that are irrelevant to malicious behaviors, it can re-
duce the frequency of kernel integrity checking. Therefore, 
BehaviorKI could further minimize performance overhead dur-
ing integrity checking. 

The architecture of BehaviorKI is shown in Fig.1. It con-
sists of four modules in the hypervisor layer which are mali-
cious behavior modeling, behavior monitoring, kernel invari-
ants extracting and integrity checking. In “malicious behavior 

modeling”, we analyze the behavior of historical rootkits
extract its frequent events sequences, and model them as mali-
cious behavior patterns. Kernel invariant extracting gets kernel 
invariants automatically by analyzing kernel source code and 
kernel memory snapshots. Malicious behavior modeling and 
kernel invariant extracting are established in advance, while 
behavior monitoring and integrity checking are running online. 
Behavior monitoring module monitors state changes of operat-
ing system by intercepting basic events with hardware-assisted 
virtualization. It collects these events and matches them with 
behavior patterns. When the behavior monitoring module de-
tects malicious behavior, it will trigger the integrity checking 
module to check kernel integrity. Then the integrity checking 
module extracts critical kernel data structures from OS level, 
and checks whether kernel invariants are violated or not. The 
details of the four modules are introduced as follows. 

A. Malicious Behavior Modeling 
BehaviorKI describes the attacking malicious behavior as 

the sequences of events, and introduce behavior patterns to 
describe the relationship between events. BehaviorKI identifies 
malicious behaviors patterns by analyzing historical rootkits. 
We characterize attacking behaviors of rootkits with behavior 
patterns compositing of operating events such as register ac-
cesses, memory accesses and system calls, etc. 

1) Basic event 
VMM can intercept a wide range of events from hardware 

relevant events to OS level events. The hardware relevant 
events are registers accessing, modifications to exception han-
dler, I/O access interceptions and memory accessing. Operating 
system level events mainly refer to system calls. In our work, 
we focus on register accessing events and memory accessing 
events at hardware level, and intercept system calls at operating 
system level. We refer the above events as basic events. The 
formal presentations of basic events are listed in TABLE . 

 
Fig. 1. The architecture of BehaviorKI. Behavior monitoring module and 

integrity checking module run in hypervisor level to check the kernel 
integrity.  
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Register accessing operation: For register relevant opera-
tions, BehaviorKI focuses on control register (CR), debug reg-
ister (DR), model-specific register (MSR), and global de-
scriptor table register (GDTR). By intercepting register access 
events, BehaviorKI can perceive the state changes of the oper-
ating system. For example, CR3 records the Page Directory 
Base Address for the virtual address space of the running pro-
cesses. Once a process is switched, contents of CR3 will be 
changed. By intercepting CR3 writing event, BehaviorKI can 
monitor the process switching behavior. In BehaviorKI, the 
register operation is represented as reg_op: <r, op>, where r 
represents the register that is being accessed and op represents 
the type of the access (read or write). 

Memory access operation: Because rootkits will violate 
kernel integrity through memory writing inevitably, memory 
access operations are critical system events on hardware. How-
ever, memory access interception could cause significant per-
formance overhead as it creates extremely huge number of VM 
exit events. To reduce the performance overhead, BehaviorKI 
only extracts memory access events to critical regions. The 
memory access operation is represented as mem_op: <m, l, op>
where m represents the name of critical memory region being 
monitored. l represents the location of region m in memory, 
and the scope of l is represented as l [start_address, 
end_address]. These addresses are virtual addresses in the op-
erating system. op represents the type of the access, such as 
read, write or execute. 

System call based operation: System calls provide an es-
sential interface between kernel mode functions and user pro-
grams. Many intrusion detection studies have reported that the 
attacks cause damage via system calls [9]. For events in operat-
ing system level, BehaviorKI intercepts system calls and pa-
rameters in them. A system call is represented as system_call: 
<syscall_num, arg1, arg2, …, argn > where syscall_num is the 
system call number, argi represents the i-th argument of the 
system call. Rootkits usually tamper kernel integrity soon after 
a system call. 

2)  Behavior patterns 
As malicious behaviors are conducted by the sequences of 

basic events, we use a pattern language to describe the attack-
ing process. There are four relations between patterns: sequenc-
ing, alternation, repetition and temporal constraints. The rela-
tions between behavior patterns and their meanings are listed as 
follows. 

pat: reg_op |mem_op |system_call represents a pattern 
based on basic events. 

sequencing: pat1;pat2 means pat2 appears immediately 
after pat1. It represents sequential relation between two pat-
terns. 

alternation: pat1||pat2 means pat1 or pat2 happens at a 
time. It represents alternation relation between two patterns. 

repetition: pat* means pat appears for zero or more than 
zero times. It represents repetition of one pattern. 

temporal constraints: <pat1,pat2> within t means pat2 
appears in t time interval after pat1. BehaviorKI also use the 
number of trapped events to represent t. <pat1,pat2> within n 
means that there are less than n events trapped between pat1 
and pat2. 

3) An example 
Adore-ng1 is a LKM-based rootkit that modifies the struc-

ture of file operations in Virtual File System (VFS) layer. VFS 
[33] provides an abstraction to access file system in the Linux 
kernel. The inode is a data structure in a Unix-style file system 
that describes a filesystem object. Operating system kernel 
maintains a uniform abstract interface for each file with the 
inode data structure, and the fops fields of inode define opera-
tion functions in VFS. Adore-ng replaces function pointers in 
fops with the hacked ones to hide files, processes, and ports.  

When an Adore-ng module is loaded, it uses the LKM hid-
ing technique to conceal itself from the kernel. It manipulates 
linked list structure module->list to hide an entry in the 
Loadable Kernel Module (LKM) list. Adore-ng removes the 
entries from the list once it injects the malicious code into the 
kernel memory space. The following code is frequently used 

TABLE I.  FORMAL PRESENTATIONS OF BASIC EVENTS 

system operation formal presentation 

reg_op <r, op> 

mem_op <m, l, op> 

system_call <syscall_num, arg1, arg2, … , argn > 

 

Fig. 2. An example: Attacking process of Adore-ng 

1https://github.com/trimpsyw/adore-ng. 

/*Adore-ng*/
function Adore-ng 

init_module; 
List_del (&__this_module->list); 

adore_init; 
end function 
function adore_init 

open /proc 
new_inode_op=proc_inode->i_op; 
orig_proc_lookup = new_inode_op->lookup; 
new_inode_op->lookup = adore_lookup; 

end function 
/*ava*/ 
process hiding 

execve ava ; 
adore_hideproc; 
adore_lookup; 

fuction adore_hideproc 
        close(open(buf)); 
end function 
function adore_lookup 
        current->flags |= PF_AUTH; 
        if current->flags == PF_AUTH  

hide_process; 
        endif 
end function 

LKM hiding behavior 

fops modified 
behavior 

task_struct modi-
fied behavior 
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to hide malicious LKM:  List_del(&__this_module->list). 
Fig. 2 shows the attacking process for Adore-ng to hide 

processes. LKM hiding behavior is a transient attacking be-
havior. First, it uses system call init_module to load itself, and 
then deletes the list head from LKM list after a quite short 
time. The malicious behavior pattern is {<init_module, <mod-
ule_list_head, l(module_list_head), write> > within 100 }, 
where 100 means the number of events trapping into VMM 
between module loading and module_list_head writing is less 
than 100. In the following, we simplify this kind of behavior 
patterns to be {init_module, <module_list_head, 
l(module_list_head), write>} for the sake of succinct. The 
integrity checking property is that if the LKM is deleted from 
the linked list, the LKM code region should also be deleted 
from kernel memory space.  

Adore-ng attacks file operation functions in the loaded 
kernel module, and then uses a user space process to notify 
which process should be hidden. For fops modified behavior, 
the attacking target is the function pointers in operation func-
tion table of the inode data structure. The behavior pattern is 
{<proc_inode->fops, l(proc_inode->fops), write>}. The integ-
rity checking activity is that the operation function table of 
inode that stores the function pointers should not be modified 
during runtime. 

In the task_struct modified behavior, the attacking targets 
are dynamic kernel data structures in task_struct. The contents 
of tast_struct describe the information of the process. Because 
ava is a user space process to notice Adore-ng which process 
should be hidden, the tampered task_struct in Adore-ng disap-
pears after the process terminates. The behavior pattern is {ex-
ec; open; close; <task_struct, l(task_struct), write>}, and the 
integrity checking target is the flags in task_struct. 

B. Kernel Invariants Extracting  
In this section, we will describe kernel integrity which 

means that kernel contents should not be modified in an unau-
thorized manner. The components in the kernel space can be 
divided into immutable components and mutable components. 
The immutable components contain kernel codes and static 
kernel data. The mutable components refer to dynamic kernel 
data including control-flow data and non-control data. Behav-
iorKI uses kernel data invariants [10] to describe the kernel 
integrity property that should be satisfied during runtime. Be-
haviorKI defines a set of kernel invariants by automatically 
analyzing kernel source codes and runtime snapshots of the 
operating system. 

Since the immutable components in kernel cannot be modi-
fied during runtime, the invariant property for immutable com-
ponents is that the hash value of their contents should be fixed. 
We obtain the start and end address of kernel codes and critical 
static data structures from System.map. Writing operations on 
these data structures or code regions indicate that the integrity 
of kernel is violated. Since writing on static regions should not 
happen when systems run normally, it will not put much extra 
performance overhead when BehaviorKI monitors the entire 
region of kernel codes and read-only data. 

For mutable components, one characteristic is that dynamic 
kernel data structures are permitted to change [7]. Another one 

is that some dynamic kernel data structures exist transiently. 
An example of dynamic kernel data is the head of LKM list. It 
is usually modified by rootkits to hide themselves immediately 
after its module having been loaded. Because transient attack-
ing behaviors may happen between two detecting intervals, the 
traditional passive monitors detecting memory at regular inter-
vals cannot detect them. 

Data invariants [10] are proposed as specifications of data 
structure integrity property that should not be violated during 
runtime. They can be specified either by experts [28] or auto-
matic tools [24]. Control flow components are usually function 
pointers storing the addresses of kernel function. Rootkits usu-
ally change these points to their own malicious ones. The in-
tegrity property is that the contents of control flow components 
should point to an available location in the kernel code address 
space. Dynamic non-control data structures store critical in-
formation and user identification data. Recently, researchers 
realize that dynamic data integrity is very important to the se-
curity of computer system [21, 22]. Linked list structures, such 
as the process lists and LKM lists, are typical dynamic non-
control data. These lists are modified when loading or unload-
ing processes and Linux kernel modules during system 
runtime. One example is the list of processes, and there are two 
lists of processes in Linux kernel. One list is the all-tasks list 
that shows all the processes in the system. Another list is the 
run-list used for scheduling processes during execution. The 
invariant property of the list of processes is that tasks appear in 
the run-list should also appear in the all-tasks list. Another 
example is the LKM list. The operating system maintains a 
linked list data structure which stores the list of loaded LKMs. 
The invariant property of the LKM list is that once a LKM is 
deleted from the LKM list, the LKM code region should also 
be deleted from the memory space. 

We generate kernel invariants automatically similar to Gi-
braltar [10]. First, we use variables in System.map as roots. 
The type definitions of these variables are obtained by analyz-
ing Linux source code with CIL [30]. Second, BehaviorKI 
extracts variables that are reaching from these roots. For ex-
ample, if the root is a C struct, all members in the struct will 
be extracted by BehaviorKI. By using the type definitions of 
their members extracted by CIL, BehaviorKI obtains the offset 
of each member. Then BehaviorKI can obtain the virtual ad-
dress of these variables with the information in the Sys-
tem.map and the offsets. After translating virtual addresses to 
machine addresses, we can capture values of the memory vari-
ables as a snapshot. BehaviorKI periodically captures the 
snapshots and convert them into trace files. These trace files 
are the input of Daikon [24]. With the trace files and type def-
initions, Daikon automatically generates kernel invariants with 
its templates. For example, template x = const checks whether 
the variable equals to a const. BehaviorKI selects those tem-
plates according to the system needs. 

Some important structures, such as LKM list, cannot be 
easily extract their invariant properties form Daikon. Behav-
iorKI will manually obtain their invariant properties. 
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C. Behavior Monitoring 
In this section, we will describe how BehaviorKI intercept 

events defined in the previous section. The methodology de-
scribed in this paper can be applicable to any VMM platforms 
that support for privileged operation interceptions and memory 
translations. As Xen hypervisor [17] is mature and open 
sourced, we chose Xen to implement BehaviorKI. BehaviorKI 
intercepts the basic events by leveraging hardware-assisted 
virtualization technology. It collects the basic events and 
matches them with the malicious behavior patterns at hypervi-
sor level. In this way, BehaviorKI will only launch integrity 
checking when malicious behavior is detected rather than de-
tecting any basic event. 

Register access operation is a privileged operation that can 
be intercepted by hardware virtualization technology. The 
guest state area in VMCS will control the access permissions 
of guest registers. When register accessing events happen, VM 
Exit will be triggered. Therefore, we can intercept register 
access events from VM Exit reason field in VMCS. 

To intercept memory access operations, BehaviorKI needs 
to determine which pages should be monitored first. Behav-
iorKI monitors events writing to kernel immutable regions and 
critical dynamic data structures. The virtual addresses of im-
portant data structures like process lists are extracted from the 
System.map in guest kernel. With the structure information of 
these data structures, BehaviorKI can reconstruct kernel data 
structures in VMM by translating addresses from guest virtual 
addresses to machine addresses. Second, BehaviorKI utilizes 
EPT violation to intercept memory accessing events by re-
moving the readable or writable permission of the monitored 
memory pages from the EPT entry. Once events are attempted 
to read or wrote these pages, EPT violation is triggered, and 
the CPU will trap into VMM to handle the EPT violation. Af-
ter having intercepted the access events, EPT violation handler 
will recover these pages to be readable and writable to let the 
instruction re-executes again. Finally, we remove the read and 
write permission of the page again in preparation for intercept-
ing the next access to the page immediately after this instruc-
tion. To reset the permission, BehaviorKI switches the TF 
(Trap Flag) on and enables trap debug in the exception bitmap 
in EPT violation handler. Then CPU traps into VMM in the 
next instruction. In the trap debug exception handler, Behav-
iorKI sets the permission of monitored pages to be inaccessi-
ble and remove TF flags to make the system run normally. 

System call interceptions can be divided into software in-
terrupts and fast system calls according to the different ways 
to implement system calls. To intercept software interrupts 
based system calls, BehaviorKI stores the original interrupt 
descriptor table entry of int 80, and then changes it to a pointer 
indexing to a non-executable page. To intercept fast system 
call, BehaviorKI sets the value of IA32_SYSENTER_EIP 
MSR as a non-executable address. When a guest system at-
tempts to execute system calls, an EPT violation will be trig-
gered. BehaviorKI obtains the system call number and param-
eters in the relevant registers. After tracking system calls in-
formation, BehaviorKI recover the value of EIP register back 

to the reserved original address. In this way, BehaviorKI simu-
lates jumping to normal entry function of system calls. 

D. Integrity Checking  
As mentioned before, if CPU traps into VMM frequently, 

the performance overhead will increase. This kind of perfor-
mance overhead is cause by monitoring events. Another per-
formance bottleneck caused by integrity checking is related to 
large scale of address translations between guest physical ad-
dresses and machine addresses by page walking. In order to 
reduce performance overhead of integrity checking, Behavior-
KI tries to reduce integrity checking frequency. It solves this 
problem by only trigger integrity checking when malicious 
behavior happens. Once event sequences collected by Behavior 
monitoring module are matched to a malicious behavior pat-
tern, integrity checking is invoked to verify whether the system 
integrity is violated. As the integrity checking targets are on 
Linux kernel layer while BehaviorKI is deployed on the hyper-
visor layer, we track the data structures of the checked invari-
ants from the operating system to the hypervisor. 

BehaviorKI describes monitor rule of static kernel compo-
nents as <mem_op, static_kernel_component_invariant>. The 
mem_op refers to <kernel_component, l, write>, where l
[component_start, component_end]. The component_start is 
the start address, and component_ end is the end address of the 
static component region in guest OS virtual address space. The 
integrity property of static kernel components is that their con-
tents should not be modified anyway. We check the integrity of 
static kernel components by evaluating whether the hash value 
of memory region from component_start to component_end is 
equal to a known good one. 

To check integrity of dynamic kernel data, the behavior 
monitoring module monitors and records sequences of basic 
events. Due to the fact that integrity checking mechanism de-
ployed outside of guest kernel, it cannot easily access kernel 
data and kernel context like the kernel does, which is the well-
known semantic gap problem [6]. With the structure infor-
mation of these data structures in guest, BehaviorKI recon-
structs kernel data structures in VMM by translating guest 
virtual addresses to machine addresses. 

IV. EXPERIMENT AND EVALUATION 
In this section, we first describe the experiments. Then we 

report the evaluation results of the integrity checking capability 
and performance of our BehaviorKI prototype.  

A. Experiment  
In this section, we first introduce the experiment settings. 

Then we describe three approaches compared in our experi-
ments. Lastly, we describe several publicly available Linux 
rootkits that are used in our evaluations. 

1) Context 
Our BehaviorKI prototype has been implemented on the 

Xen hypervisor with hardware-assisted virtualization. All ex-
periments were performed on Intel Core i7-4710MQ CPU with 
2.5.0GHz and 8GB memory. The original Xen hypervisor is 
4.4.0 version and the HVM guest OS is a 32-bit Linux 2.6.24 
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kernel. The virtualized guest was distributed with 2GB 
memory and 1-core configuration. 

2) Treatments 
In our experiments, we compared BehaviorKI with snap-

shot-based and event-triggered approaches. We implemented 
the snapshot-based and event-triggered approaches by our-
selves since there were no publicly available tools or projects. 
We use following names to represent these three approaches. 

 SnapCheck is the snapshot-based approach which conduct 
integrity checking at regular intervals. For snapshot-based 
methods, we conducted experiments at the intervals of 
1ms, 10ms, 100ms and 1000ms. 

 EventCheck is the event-triggered approach, where the 
trigger events contain basic events described in section 
. In the evaluation, we use a simple whitelist filter of basic 
events to trigger integrity checking. The events consist of 
CR register accessing events, all system calls events, 
memory accessing events considering all static regions 
and a dynamic region containing LKM.  EventCheck500 
means that 500 memory page translations are consumed 
in each integrity checking. While EventCheck1000, 
EventCheck1500, EventCheck2000 represent that the 
number of page translations in event-triggered methods is 
1000, 1500 and 2000 respectively. EventNoCheck repre-
sents experiment which monitored events as EventCheck 
and BehaviorKI did, but EventNoCheck did not check 
kernel integrity. 

 BehaviorKI is our behavior-based approach that described 
in previous sections. BehaviorKI- represents Behav-
iorKI checking 2610 invariants. BehaviorKI-  repre-
sents BehaviorKI checking 24954 invariants. 

3) Rootkits 
Table  shows the set of rootkits we used in our experi-

ments, as well as violated targets, malicious behavior patterns 
and checking invariants. We select these three rootkits because 
their attacked data structures cover kernel code, kernel static 
data and kernel dynamic data. In addition, some of their mali-
cious behaviors and the attacked components are transient.   

 Enyelkm is a kernel rootkit in the form of loadable kernel 
module. It hides files, directories and processes by modifying 

the entry function of system call instead of tampering the sys-
tem call table. The code of the hacked system call is patched to 
redirect system call. One of the hacked system calls is getdents 
which conceals directory entries. Enyelkm modifies the system 
call read to block it return portions from files. Enyelkm also 
modifies the system call kill is to get the root privilege. When 
the Enyelkm module is loaded, it will use the LKM hiding 
technique to conceal itself from the kernel. It will manipulate 
linked list structure module->list to hide an entry in the LKM 
list. Enyelkm will remove the existing entry from the list once 
the malicious codes have been injected into the kernel memory 
space. 

Adore-ng is a LKM-based rootkit. As mentioned in previ-
ous section, Adore-ng uses the structure of file operations in 
Virtual File System to hide files, processes and ports. It also 
modifies the module->list structure to conceal itself as what 
Enyelkm does. 

Xingyiquan is also a LKM-based rootkit, it hides process-
es, files, directories, processes, network connections, as well as 
adds backdoors. It hacks system call table to redirect system 
calls. 

B. Evaluation 
In this section, we evaluated the detection capability and 

performance of BehaviorKI compared with snapshot-based 
methods and event-triggered methods. In our evaluation, we 
conducted the experiments for 100 times to calculate rootkit 
detected percentage and the average performance overhead. 

1) Rootkit Detection Capability 
In this evaluation, we compared rootkits detection capabil-

ity of BehaviorKI with snapshot-based methods and event-
triggered methods. We conducted Snapshot experiments with 
intervals of 1ms, 10ms, 100ms and 1000ms and summarized 
the attacked data into three categories in Table III. The first one 
is static components including kernel code and static kernel 
data structures e.g., system call table, operations of Virtual File 
System (VFS). The second evaluation data in our experiments 
is the contents in task_struct. The contents in task_struct be-
long to dynamic non-control flow components. The third eval-
uation data is the LKM list which is also a dynamic non-
control flow component. 

TABLE II.  ROOTKITS USED IN OUR EVALUATION 

Rootkit Name Attacked Data Structure Behavior Pattern Kernel Invariant 

Enyelkm content in system call function {{<idtr, read>; <idt, l(idt), read>}||< SYSENTER_EIP_MSR, 
read>};< system_call_func , l( system_call_func ), write> 

invariant of system call entry function (kernel code invari-
ant) 

module->list {init_module;  <module_list_head, l(module_list_head), write> } LKM list invariant 

Adore-ng 0.56 inode->i_ops 

file->f_op 

{<proc_inode->fops, l(proc_inode->fops), write>} inode operation functions control component invariant

task_struct->{flags, uid, …} {exec; open; close; <task_struct, l(task_struct), write>} task_struct dynamic data component invariant

module->list {init_module;  <module_list_head, l(module_list_head), write> } LKM list invariant 

xingyiquan system call table <syscall_table, l(syscall_table), write> static data invariant 

module->list {init_module;  <module_list_head, l(module_list_head), write> } LKM list invariant 
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Table III shows the results of the comparisons. Snapshot-
based methods with 1ms to 1000ms intervals, EventCheck and 
BehaviorKI can detect 100% of static component violations. 
For static components, SnapCheck, EventCheck and Behav-
iorKI can detect all integrity violation.  

In the experiments of the second evaluation data, the violat-
ed task_struct existed only for a short period of time. Event-
Check and BehaviorKI both can detect all the violations to this 
kind of kernel data. However, SnapCheck can detect 97% of 
attacks at 1ms interval while it can only detect 15% at 100ms 
interval. We can see that SnapCheck missed more attacks as 
the interval increased. 

In the third data evaluation, the lifetime of LKM list attack 
was much shorter than task_struct attack. In Table III, we can 
see that SnapCheck at 1ms interval still cannot detect that vio-
lation, but EventCheck and BehaviorKI can detected the viola-
tion in one hundred percent.  

In conclusion, SnapCheck, EventCheck and BehaviorKI 
can all detect static data violations. However, SnapCheck can-
not always detect transient data violations in all situations. The 
detection performance of SnapCheck is effected by the living 
duration of attacked targets and checking intervals. SnapCheck 
could not detect transient dynamic data attacks with quite short 
living duration, while EventCheck and BehaviorKI performed 
well in detecting this kind of attacks. All these three methods 
can detected violations of static components for these integrity 
violations persist after being violated. 

2) Runtime Performance 
In order to evaluate the effectiveness of BehaviorKI in 

terms of runtime performance, we compared the performance 
overhead of BehaviorKI with EventCheck. We evaluated the 
performance using the STREAM benchmark [29], which was 
widely used for measuring the memory bandwidth of a com-
puter system. The evaluation was performed over four vector 
operations: copy, scale, add and triad. We used the average 
time to indicate the performance. The Copy function simply 
moves data from one memory location to another. The Scale 
function is similar to Copy, but it multiplies the value by a 
constant before writing to the new location. The Add function 
reads a value from one memory location, followed by a value 
from another location. It adds the values and writes the results 
to a third location. The Triad function combines the Scale and 
Add function. We run the STREAM benchmark on the guest 
VM. The performance of these approaches is compared with 
the performance of Xen that does not deploy any events moni-
toring or integrity checking mechanisms. The performance 
overhead of original unmodified Xen is 100%. 

We conducted three comparisons to illustrate BehaviorKI 
runtime performance as follows.  

a) Performance overhead compared with event-
triggered methods 

First, we compared the performance of BehaviorKI with 
EventCheck. As we mentioned before, the performance over-
head of EventCheck and BehaviorKI is composed of perfor-
mance overhead of events monitoring and performance over-
head of integrity checking. In our approach, we only consider 
the decline of performance overhead caused by integrity check-
ing. We introduced EventNoCheck to illustrate performance 
overhead of events monitoring. Since EventNoCheck only in-
tercepted events but not triggered integrity checking, extra per-
formance overhead compared with EventNoCheck was due to 
integrity checking.  As each variable in the invariants requires a 
page address translation, large numbers of invariants checking 
will increase performance overhead of EventCheck significant-

TABLE IV.  CHECKING FREQUENCY AND PERFORMANCE OVERHEAD OF 
INTEGRITY CHECKING 

 Snapshot 
1ms 

EventCheck BehaviorKI 

Integrity checking 
overhead 

16.12% 58.10% 1.36% 

Integrity checking 
frequency (times/s) 

1000 1558 97 

TABLE III.  ROOTKITS DETECTION RATE AGAINST 100 TRIALS OF RECURRING ATTACKS 

Data Type Snapshot 1000ms Snapshot 100ms Snapshot 10ms Snapshot 1ms EventCheck BehaviorKI 

static components 100% 100% 100% 100% 100% 100% 

task_structs contents 0% 15% 88% 97% 100% 100% 

LKM list 0% 0% 0% 0% 100% 100% 

 

Fig. 3. Performance degradation of BehaviorKI and EventCheck comparing 
with system running on unmodified Xen. The performance overhead  of 
unmodified Xen is 100% 
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ly. In this group of experiments, we automatically extracted 
kernel 2610 invariants with the template x = const. 

The results of performance degradation for EventCheck and 
BehaviorKI are shown in Fig. 3. EventCheck has 71.91% per-
formance overhead while BehaviorKI has 15.17%. Compared 
with EventCheck, BehaviorKI reduces 56.74% performance 
overhead. The results of EventNoCheck show that events mon-
itoring increases 13.81% performance overhead. Since both 
EventCheck and BehaviorKI need to intercept events, extra 
performance overhead comparing with EventNoCheck was 
caused by integrity checking. Then the comparative perfor-
mance overhead of integrity checking after reducing the inevi-
table 13.81% performance overhead is 58.10% for EventCheck 
and 1.36% for BehaviorKI. Comparing with EventCheck, Be-
haviorKI significantly declines the performance overhead of 
integrity checking. 

To illustrate reasons of performance overhead degradation 
of BehaviorKI, we evaluated the integrity checking frequency 
and performance overhead of integrity checking. In Table IV, 
Snapshot-based method with 1ms intervals triggers integrity 
checking 1000 times per second. It takes 16.12% extra perfor-
mance overhead caused by integrity checking. EventCheck 
triggers 1558 times of integrity checking per second, while 
BehaviorKI only triggers 97 per second. Compared with 
EventCheck, the integrity checking frequency of BehaviorKI is 
much lower. This is the reason that BehaviorKI can degrade 
performance overhead significantly compared with Event-
Check. Table IV shows that when the integrity checking fre-
quency become higher, the performance overhead of integrity 
checking increases. 

b) Performance bottleneck of event-triggered methods 
with different page translation frequency 

In this group of experiments, we compare the performance 
of EventCheck with different page translation frequency to 
analyze the performance bottleneck of event-triggered meth-
ods. To illustrate the relation between performance overhead 
and the frequency of memory page translations, we conducted 
experiments based on event-triggered methods with different 
page translation frequencies. We conducted experiments of 

EventCheck which need 500, 1000, 1500 and 2000 page trans-
lations. 

Fig. 4 shows the comparison results about extra perfor-
mance overhead of integrity checking among different numbers 
of page translations. The performance overhead of integrity 
checking is the extra performance overhead comparing with 
EventNoCheck. Integrity checking performance overhead of 
EventCheck500 is only 4.07%, and the performance overhead 
increases with more memory page translations in integrity 
checking. EventCheck involving 2000 memory page transla-
tions has 40.94% extra performance overhead, which is a high 
consumption. Such high consumption mainly due to the EPT 
walking which translates guest virtual addresses to machine 
addresses during memory integrity checking. Large scale of 
translations will increase performance overhead significantly. 
Since each variable in an invariant needs one page translation, 
event-triggered methods cannot burden large numbers of invar-
iants in integrity checking for high performance overhead. 

c) Performance overhead under large numbers of 
invariants 

Lastly, we compared the performance of BehaviorKI with 
large numbers of invariants. To investigate the effectiveness of 
our approach with large numbers of invariants, we extracted 
24954 invariants with more templates in Daikon [24]. Among 
these invariants, 2610 invariants were in form of x = const, 
while 22344 invariants contained two variables like varia-
bleA > variableB. 

In Fig. 5, BehaviorKI- represents BehaviorKI with 
2610 invariants, while Behavior-  represents BehaviorKI 
with 24954 invariants. As each variable in invariants need one 
page translation, checking integrity of Behavior-25k required 
nearly 50000 page translations for one time. The results show 
that BehaviorKI cost 3.08% extra performance overhead for 
integrity checking with 24954 invariants. While the perfor-
mance overhead of integrity checking with 2610 invariants is 
1.36%. BehaviorKI did not cost much performance with large 
numbers of invariants. 

 
Fig. 4. Extra performance overhead of integrity checking with varied 
numbers of page translations compared with EventNoCheck 

 

Fig. 5. Performance degradation of BehaviorKI comparing with system 
running on unmodified Xen. The performance overhead of unmodified Xen is 
100% 
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V. DISSCUSSION 
The results show that snapshot-based methods could not 

detect all kernel integrity violations caused by transient attacks, 
especially those have quite short living duration. While Snap-
Check with shorter snapshot intervals increases the perfor-
mance overhead heavily. EventCheck and BehaviorKI both 
need to intercept events, which cause CPU trapped into VMM 
and increase performance overhead. But both of these two 
methods can detect transient attacks even their living duration 
is quite short. By introducing BehaviorKI, it filtered unneces-
sary triggers to checking kernel integrity. According to our 
evaluation results, BehaviorKI can reduce 56.74% performance 
overhead with the same detection capability as EventCheck. 

The results show that intercepting events and integrity 
checking could both increase performance overhead. Since 
EventCheck and BehaviorKI have to intercept the same set of 
events, their performance overhead caused by intercepting 
events is the same. This part of performance overhead is neces-
sary for checking transient attacks. We only consider how to 
reduce performance overhead caused by integrity checking in 
this paper. Performance overhead of integrity checking is rele-
vant to checking frequency and the memory pages translation 
frequency involved in integrity checking. BehaviorKI reduces 
checking frequency by filtering irrelevant event trapping ac-
cording to malicious behavior patterns. In conclusion, Behav-
iorKI can detect transient attacks comparing with SnapCheck, 
and introduced lower performance overhead caused by integri-
ty checking than EventCheck. 

In our experiments, we automatically extracts 2610 invari-
ants with a certain template x = const to compare performance 
overhead with event-triggered methods. However, practicable 
integrity checking system needs large numbers of data invari-
ants with more templates to describe kernel integrity. For per-
formance overhead increases heavily, event-triggered methods 
cannot be used on VMM with large numbers of invariants. Fig. 
5 shows that BehaviorKI can deal with large numbers of invar-
iants with only 3.08% extra performance overhead of integrity 
checking. 

Event-triggered integrity checking methods typically have 
performance overhead problem since they will trigger unneces-
sary kernel integrity checking on normal events. BehaviorKI 
can alleviate that problem by triggering integrity checking only 
when the event sequences match with malicious behavior pat-
terns. Therefore, BehaviorKI has lower performance overhead 
on integrity checking compared to event-triggered methods. 
The basic events considered in BehaviorKI are listed in section 

. With more events we didn’t consider in this paper, the per-
formance overhead of event-triggered methods will increase 
more heavily than BehaviorKI. There are still some other basic 
events that we do not consider in this paper, such as I/O-related 
events. With more events that we did not consider in the evalu-
ation, the performance overhead of event-triggered methods 
would increase more heavily than BehaviorKI. 

VI. LIMITATIONS AND FUTURE WORKS 
In this section, we discuss the limitations and the future 

works. 

A. Memory accessing monitoring 
In our implemented prototype, BehaviorKI cannot intercept 

memory access operations on large regions of mutable 
memory. This is because frequent accesses to mutable memory 
will cause large numbers of VM exits for EPT violation. High 
frequency of VMM trapping may lead to system crashing. In 
our future work, we plan to monitor large scale of memory 
accessing events, while the system can tolerate performance 
overhead at the same time. We will also try to reduce unneces-
sary interceptions of memory access operation by precisely 
locating the monitored regions. 

B. Behavior patterns generation 
BehaviorKI is a behavior-based approach. The more mali-

cious behavior patterns are established, the more effective the 
approach will be. In our prototype, the malicious behavior pat-
terns have been extracted and modeled based on expert’s expe-
rience when analyzing historical attack processes. In the exper-
iment, we only considered three typical rootkits to evaluate the 
performance of our approach. The results showed that Behav-
iorKI can get good performance. When including more rootkits, 
we believe the proposed approach can outperform snapshot-
based methods and event-triggered methods too. In addition, in 
our future work, we will elaborate and improve our behavior 
pattern modeling to provide an automatic approach. The ap-
proach can mine and generate new malicious behavior patterns 
when unknown rootkits appear.     

VII. RELATED WORK 
Many researchers contribute to kernel integrity checking of 

the operating system. BehaviorKI was inspired by behavior 
model in intrusion detection systems. We briefly describe our 
related works as follows. 

A. Integrity Checking 
Integrity checking mechanisms are deployed on kernel 

space at an early stage of researches. IMA [11] is an integrity 
measurement system that extents TCG trust measurement con-
cepts to dynamic executable contents from BIOS up into the 
application layer. IMA relies on hardware TPM (Trusted Plat-
form Module) and Linux kernel to do integrity measurement. 

As the hardware-assisted virtualization technology devel-
ops and VMM-based introspections [23] are proposed, people 
deploy kernel integrity checking and monitoring mechanisms 
on hypervisors. Para-virtualized methods have to modify kernel 
device drivers, while hardware-based full virtualization tech-
nologies do not need to modify the kernel which runs transpar-
ently. VMM-based approaches can be categorized by the type 
of protected contents. Secvisor [8] and Pioneer [18] guarantee 
kernel code integrity from modification and illegal execution. 
However, only guaranteeing code integrity cannot prevent at-
tacks that control program behavior without modifying the 
code. Control-Flow Integrity (CFI) [20] is proposed to deal the 
issue that rootkits attack control flow of kernel without inject-
ing malicious code. Besides, researchers realize that data integ-
rity is also crucial to the security of computer system [21, 22]. 
Gibraltar [10] introduces data invariants to specify kernel data 
structure integrity, it automatically infers and enforces specifi-

22



cations of kernel data structure integrity. DADE [31] optimizes 
kernel data invariants generation and only check data invariants 
on dirty memory pages. KernelGuard [7] uses a watchpoint to 
monitor the location of dynamic data changing, and 
memoryguard is proposed to ensure the accesses to critical 
memory regions are caused by illegal functions. 

B. Event-triggered Monitoring 
Before event-triggered approaches are proposed, research-

ers use passive technologies to monitor the target system at 
intervals. Copilot [1] and Gbrattar [10] obtain snapshots of 
kernel memory to check kernel integrity violations via an ex-
ternal peripheral device. Petroni describes SBCFI [2] which 
performs periodic scans of the kernel memory. However, these 
methods cannot detect transient attacks and frequent monitor-
ing will increase the performance overhead significantly. 

Active monitor of kernel data has been proposed to address 
transient attacks, they use event-triggered techniques to do this. 
KernelGuard [7] uses VMM-based memory access monitor to 
prevent malicious memory accesses on protected kernel data 
actively. OSck [5] utilizes event-triggered method to monitor 
static regions of the kernel. HyperTap [4] defines four kinds of 
events to trigger memory monitor based on hardware-assistant 
virtualization. KI-Mon [3] proposes a hardware-assisted event-
triggered monitoring platform for mutable kernel object. It uti-
lizes a whitelist filter to eliminate unnecessary software in-
volvement in value verification. However these approaches use 
events to trigger memory monitoring without considering its 
context and basic events do not have enough sematic to trigger 
integrity checking. In this way it still contains lots of irrelevant 
events that lead to unnecessary kernel integrity checking and 
will still have performance problem. BehaviorKI proposed in 
this paper tried to consider event context and filter irrelevant 
trigger events. 

C. Malware Behavior Model 
In the researches of intrusion detection system, large num-

bers of works use behavior models to characterize benign be-
haviors and malware behaviors. A general method is to use 
system call sequences and their arguments to characterize the 
features of malicious software and benign software separately 
[6, 9, 25]. Some researchers use graph-based models of system 
calls to describe the system behavior [27]. Recently, Rhee et al 
[26] use memory access patterns to characterize the behaviors 
and this method does not rely on temporal control information. 
Zhixing et al [32] use machine learning to analyze virtual 
memory access. However, malware detections with intrusion 
detection technology have great false positives. In our work, 
we introduce malware behavior model in intrusion detection to 
describe malicious behavior in integrity checking system. By 
using malicious behavior to trigger kernel integrity checking, 
BehaviorKI eliminated unnecessary events that trigger kernel 
integrity checking. 

VIII. CONCLUSION 
In this paper, we introduced BehaviorKI which is a novel 

behavior-triggered kernel integrity checking technology. Be-
haviorKI uses behavior patterns to identify malicious behavior. 

When malicious behavior is detected, BehaviorKI will trigger 
integrity checking of kernel invariants. BehaviorKI can reduce 
integrity checking performance overhead by filter unnecessary 
triggering events. Our experiments showed that BehaviorKI 
was able to detect all integrity violations, while snapshot-based 
methods missed some integrity violations on dynamic data 
structures. BehaviorKI outperformed event-triggered methods 
by reducing 56.74% performance overhead with 2610 invari-
ants and can deal with large numbers of invariants checking.  
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