
A Deep Context-wise Method for Coreference
Detection in Natural Language Requirements

Yawen Wang†‡, Lin Shi†‡∗, Mingyang Li†‡, Qing Wang†‡§∗, Yun Yang¶
†Laboratory for Internet Software Technologies, Institute of Software, Chinese Academy of Sciences, Beijing, China

‡University of Chinese Academy of Sciences, Beijing, China
§State Key Laboratory of Computer Sciences, Institute of Software, Chinese Academy of Sciences, Beijing, China

¶School of Software and Electrical Engineering, Swinburne University of Technology, Australia

{yawen, mingyang}@itechs.iscas.ac.cn, {shilin, wq}@iscas.ac.cn, yyang@swin.edu.au

Abstract—Requirements are usually written by different stake-
holders with diverse backgrounds and skills and evolve continu-
ously. Therefore inconsistency caused by specialized jargons and
different domains, is inevitable. In particular, entity coreference
in Requirement Engineering (RE) is that different linguistic
expressions refer to the same real-world entity. It leads to
misconception about technical terminologies, and impacts the
readability and understandability of requirements negatively.
Manual detection entity coreference is labor-intensive and time-
consuming. In this paper, we propose a DEEP context-wise
semantic method named DEEPCOREF to entity COREFerence
detection. It consists of one fine-tuning BERT model for con-
text representation and a Word2Vec-based network for entity
representation. We use a multi-layer perception in the end to
fuse and make a trade-off between two representations for
obtaining a better representation of entities. The input of the
network is requirement contextual text and related entities, and
the output is the predictive label to infer whether two entities
are coreferent. The evaluation on industry data shows that our
approach significantly outperforms three baselines with average
precision and recall of 96.10% and 96.06% respectively. We
also compare DEEPCOREF with three variants to demonstrate
the performance enhancement from different components.

Index Terms—Requirement engineering, entity coreference,
deep learning, fine-tuning BERT

I. INTRODUCTION

Most software requirements are specified in natural lan-

guage with the flexibility to accommodate the arbitrary ab-

straction [1]–[4]. It is a challenging but essential task to

write requirements clearly without inconsistency and ambigu-

ity before passing to the later stages of the development [5],

[6]. The inconsistency, which is one of the quality principles

related to linguistic aspects of natural language requirements

[7], might occur between requirements analysts and domain

experts because of their specialized jargons, or stakeholders

from different domains.

In particular, stakeholders could use different linguistic

expressions to refer to the same real-world entity in natural

language requirements, and we define such phenomena as

Entity Coreference (EC). More specifically, Figure 1 presents

an example of EC. The three requirements have their related

entities: “industry-related term list” in R1, “finance vocabulary

∗ Corresponding authors.

Fig. 1. Examples of coreferent entities in textual requirements, which make
the requirements difficult to understand.

list” in R2 and “finance word list” in R3. However, according

to their contexts, the three entities refer to the same thing. EC

might lead to misconception on entities, thus impairing the

readability and understandability of requirements. This work

takes the first step to resolve EC in RE.

In the literature, some works have been proposed to tackle

the problem of inconsistency or ambiguity in textual require-

ments. Pattern-based methods [8]–[15] use Part-of-Speech

(POS) patterns or heuristics. Learning-based methods [5], [16],

[17] use information retrieval (IR) technique such as Latent Se-

mantic Indexing (LSI) or unsupervised clustering algorithms.

Similarity-based methods include word embeddings [3] and

syntactic methods (e.g., Jaccard [18] and Levenstein [19]).

However, these methods cannot be directly utilized in EC due

to the following challenges:

• Multi-word entity. In textual requirements, entities are

more about noun phrases [20], [21] than a single word.

As shown in Figure 1, all entities in examples consist

of multiple words. Based on observations of our industry

data, the average length of entities is 3.52. Multi-word

entities are difficult to represent with word-level repre-

sentation. For example, although E1 refers to the same

entity as E2 and E3, E1 is quite different from the other

two expressions that they only share one identical word

“list”. If we simply use the word-wise similarity methods

such as word embedding, incorrect EC will be given that

E2 and E3 are coreferent while E1 is a different entity.

• Missing contextual semantics. Existing solutions lack

sentence-level contextual semantic information, which

180

2020 IEEE 28th International Requirements Engineering Conference (RE)

2332-6441/20/$31.00 ©2020 IEEE
DOI 10.1109/RE48521.2020.00029

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 10,2023 at 13:43:36 UTC from IEEE Xplore. Restrictions apply.

can provide extra information for resolving EC. In most

cases, we infer whether two entities are coreferent based

on their contexts. Coreferent entities usually have similar

contexts. For example, all the three requirements in

Figure 1 have similar contextual words such as “user”,

“online help tool”, etc., which indicate three entities are

coreferent. Therefore, how to fuse contextual semantic in

entity representation is important as well.

• Insufficient annotated resources. EC detection in RE

is a domain-specific task, which cannot directly benefit

from large general corpora or public knowledge bases

like general coreference detection tasks. In addition,

annotating coreferent entities in requirements requires

domain expertise and intensive manual effort, resulting in

insufficient annotated data for effective learning. How to

use limited annotation data and benefit from pre-trained

models trained on large general corpora is difficult.

We propose a DEEP context-wise semantic method named

DEEPCOREF to resolve entity COREFerence in natural lan-

guage requirements. First, we truncate context for each entity

and then convert 〈context, entity〉 pairs to model input for-

mat. Then we build a context-wise similarity network to infer

whether two entities are coreferent. The network consists of

two parts. One is a deep fine-tuning BERT context model for

context representation, and the other is a Word2Vec-based en-

tity network for entity representation. Finally, we use a Multi-

Layer Perceptron (MLP) to fuse two representations. The input

of the network is requirement contextual text and related

entities, and the output is the predictive label to infer whether

two entities are coreferent. The combined sentence-level con-

text representation and word-level entity representation can be

trained jointly with other parameters, thus obtaining a better

entity representation. In addition, with models pre-trained on

large corpora (e.g., BERT and word embeddings) and fine-

tuning technique, we only need to annotate small amounts of

data for fine-tuning. It alleviates insufficient annotated resource

problems and the high cost of manual annotation as well.

We investigate the effectiveness of DEEPCOREF with data

from our industry partner. The experimental results show that

our approach significantly outperforms three baselines with

average precision and recall of 96.10% and 96.06%. The

results confirm that our approach could effectively detect EC

from textual requirements, thus can facilitate reaching a shared

understanding on entities among multiple stakeholders from

different domains in an automated way. We also compare

DEEPCOREF with three variants to demonstrate the perfor-

mance enhancement from different components.

The main contributions of this paper are as follows:

• We highlight the importance of detecting EC in RE.

• A deep context-wise semantic method with a powerful

representation for entities in textual requirements for

automatically detect EC.

• Experimental evaluation on 21 projects with 1853 sam-

ples from the industry community with promising results.

• Public-access of source code1 to facilitate the replication

of our study and its application in other contexts.

The rest of the paper is organized as follows. Section

II describes the background. Section III presents the design

of our proposed approach. Sections IV and V show the

experimental setup and evaluation results respectively. Section

VI provides a detailed discussion. Section VII describes threats

to validity. Section VIII surveys related work. Finally, we

summarize the paper in Section IX.

II. BACKGROUND

This section describes key techniques related to this re-

search: word embeddings, fine-tuning BERT and Coreference

Resolution (CR). We include them here because our work is

based on these techniques.

A. Word Embeddings

Embedding (also known as distributed representation [22],

[23]) is a technique for learning vector representations of

entities such as words, sentences and images in such a way

that similar entities have vectors close to each other [22], [24].

A typical embedding technique is word embedding, which

represents words as fixed-length vectors so that similar words

are close to each other in the vector space [22], [24], [25].

Comparing with Levenstein [19], here ”similar” means seman-

tic similarity instead of string similarity. Word embeddings are

based on the distributional hypothesis of Harris [26]. We can

estimate distances and identify semantic relations from their

vectors.

Word embedding is usually implemented by a model such

as Continuous Bag-of-Words (CBOW) and Skip-Gram [24].

These models build a neural network that captures the relations

between a word and its contextual words. The vector represen-

tations of words, as parameters of the network, are trained with

a text corpus [22]. Another word embedding model is GloVe

[25], which is an unsupervised learning algorithm for obtaining

vector representations for words. Training is performed on

aggregated global word-word co-occurrence statistics from a

corpus, and the resulting representations showcase interesting

linear substructures of the word vector space.

Information captured from corpora substantially increases

the value of word embeddings to both unsupervised and semi-

supervised Natural Language Processing (NLP) tasks. For

example, good representations of both the target word and the

given context are helpful to various tasks, including word sense

disambiguation [27], coreference resolution and named entity

recognition (NER) [23], [28], [29]. The context representations

used in such tasks are commonly just a simple collection of the

individual embeddings of the neighboring words in a window

around the target word, or a (sometimes weighted) average of

these embeddings [30]. Likewise, a sentence (i.e., a sequence

of words) can also be embedded as a vector [31]. A simple

way of sentence embedding is, for example, to consider it as

a bag of words and add up all its word vectors [32].

1https://github.com/MeloFancy/DeepCoref

181

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 10,2023 at 13:43:36 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. The Overview of DEEPCOREF

B. Fine-tuning BERT

BERT (Bidirectional Encoder Representations from Trans-

formers) [33] is a deep bidirectional transformer encoder [34]

trained with the objective of masked language modeling and

the next-sentence prediction task, which proves effective in

various NLP tasks.

BERT framework has two steps: 1) pre-training, where the

model is trained on unlabeled data over different pre-training

tasks. 2) fine-tuning, where the BERT model is first initialized

with the pre-trained parameters, and all of the parameters

are fine-tuned using labeled data from the downstream tasks.

BERT has two model sizes: BERTBASE (L=12, H=768,

A=12, Total Parameters=110M) and BERTLARGE (L=24,

H=1024, A=16, Total Parameters=340M), where the number

of layers (i.e., Transformer blocks) is denoted as L, the hidden

size as H, and the number of self-attention heads as A.

BERT is designed to unambiguously represent both a single

sentence and a pair of sentences in one token sequence, for

handling a variety of downstream tasks. As for output, the

token representations are fed into an output layer for token-

level tasks, and the [CLS] representation is fed into an output

layer for classification. The pre-trained BERT can be simply

plugged by the task-specific inputs and outputs and fine-tuned

all the parameters end-to-end, which is relatively inexpensive

compared to pre-training.

C. Preliminaries on Coreference Resolution

Coreference is defined as occurring when one or more

expressions in a document refer to one entity. CR is a classical

NLP task of finding all expressions that are coreferent with

any of the entities found in a given text [35]–[38]. In CR, an

entity refers to an object or set of objects in the world, while

a mention is the textual reference to an entity [36].

There two types of tasks in CR [37]: 1) resolving entities

versus events 2) whether co-referring mentions occur within a

single document (WD: within-document) or across a document

collection (CD: cross-document). Compared to entity CR,

event coreference is considered to be a more difficult task,

mostly due to the more complex structure of event mentions

[37], [39]. Entity mentions are mostly noun phrases, while

event mentions may consist of a verbal predicate (acquire)

or a nominalization (acquisition), where these are attached to

arguments, including event participants and spatio-temporal

information [37]. WDCR approaches provide techniques for

the identification of mentions in one document that refer to the

same underlying entity/event, while CDCR approaches pro-

vide techniques for the identification of mentions in different

documents [38].

III. APPROACH

To address the challenges mentioned in Section I, we

propose an approach named DEEPCOREF for resolving EC de-

tection. Figure 2 presents the overview of DEEPCOREF. Given

a set of textual requirements written in natural language and its

related entity, we firstly truncate their corresponding contexts

(see Section III-A). Then we build a context-wise similarity

classification network (see Section III-B) to predict whether

a pair of entities are semantically equivalent. The network

mainly consists of two parts. One is a deep fine-tuning BERT

model for encoding the contexts, the other is a Word2Vec-

based network for encoding entities. The output of two parts is

representations of contexts and entities respectively, which are

then fed into an MLP for similarity classification. Finally, we

infer the predictive class based on the probabilities produced

by the softmax layer.

182

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 10,2023 at 13:43:36 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. An example of context truncation. The bold word (e.g., user) is entity
word. The red dotted rectangle represents the window. Here window size
M = 5, and the length of entity N = 1.

A. Context Truncation

Since entity extraction has been widely developed by many

NLP researches [20], [21], [40], DEEPCOREF does not focus

on entity extraction, and utilizes entities that have already been

extracted as the basic data. In our study, entities are ready-

made and manually reviewed to avoid error accumulation from

entity extraction tools.

In this study, the context refers to the neighboring words

in a window around a certain entity. This step is to truncate

requirement text centered on an entity with a window size

as the context related to the entity. Given an entity and its

related requirement text, we first locate the entity and then

truncate text centered on the entity according to the window

size. Entities might occur in different positions of one sentence

(e.g., near the beginning, near the middle and near the end).

So we tackle different cases according to the rules below. We

assume window size is M , the length of entity denoted as N ,

the length of text sequence before entity denoted as lpre, the

length of text sequence after entity denoted as lsub:

• If lpre � �M−N
2 � and lsub � �M−N

2 �, both previous

and subsequent text sequences are truncated by length

�M−N
2 �.

• If lpre � �M−N
2 � and lsub < �M−N

2 �, the previous text

sequence is truncated by length min(lpre,M−N− lsub),
and all subsequent words are reserved, where min(·) is

to take the minimum.

• If lpre < �M−N
2 �, the previous text sequence is truncated

by length lpre, and all subsequent words are reserved.

The final extracted context is a concatenation of truncated pre-

vious sequence (denoted as pre), the entity itself and truncated

subsequent sequence (denoted as sub): [pre ⊕ entity ⊕ sub].
Finally, we use a special symbol [PAD] padding to the length

of window size. Figure 3 demonstrates an example of context

extraction for each case. By context truncation, we obtain the

entity and its related context (e.g., 〈context, entity〉).
B. Build Context-wise Similarity Network

The context-wise similarity network takes two pairs (e.g.,

〈context1, entity1〉 and 〈context2, entity2〉) as input and

predicts whether two pairs are coreferent. The network consists

of two parts. One is a fine-tuning BERT model for learning

context representations, and another is a Word2Vec-based

network for learning entity representations. We concatenate

two representations for better combining semantic information

about the entire contextual sentences and individual words.

Finally, we use an MLP and softmax layer to infer the

predictive label.

1) Fine-tuning BERT Context Model: A powerful context

representation is helpful for measuring context-wise similarity

[41]. In many NLP tasks (e.g., entity disambiguation and entity

coreference resolution), the context representations are com-

monly a collection of the individual embedding of contextual

words, (e.g., a weighted average of these embeddings). Such

approaches do not include any mechanism for optimizing the

representation of the entire contextual sentences [30].

To obtain a good context representation, we use BERT

which is a fine-tuning based and bidirectional pre-

training representation model [33]. It takes a sentence

pair (e.g., 〈context1, context2〉, discomposed from two

〈context, entity〉 pairs) as input, and produces a context

vector representation. Due to limited computing resources, we

use the model BERTBASE with a relatively small model

size, which has 12 layers, hidden dimension size 768 and

12 attention heads. In BERT, the input can be a pair of

sentences. Each sentence is represented by 128 word-piece

tokens (window size M = 128 in Section III-A). Two

contexts are concatenated and fed to the model as a se-

quence pair together with special start and separator tokens:

([CLS] context1 [SEP] context2 [SEP]). The transformer

encoder produces a context vector representation (denoted as

vctx) of the input pair, which is the output of the last hidden

layer at the special pooling token [CLS] [33], [42].

2) Word2Vec-based Entity Network: To capture the word-

level information of entities, we also build a Word2Vec-based

network to learn an entity representation using word embed-

dings [22]. It takes an entity pair (e.g., 〈entity1, entity2〉,
discomposed from two 〈context, entity〉 pairs) as input, and

produces an entity vector representation. We use the 300-

dimensional word embeddings which are pre-trained on a 1.3G

Wikipedia corpus2 with 223M tokens and 2129K vocabularies.

It is trained with three features (word features, n-gram features

and character features) using the skip-gram model with nega-

tive sampling [43].

For each entity in the pair 〈entity1, entity2〉, we first

segment words and obtain the word embedding of each word.

Then we use the average of embeddings of all words in one

entity to represent the embedding of this entity (denoted as

te). So the entity pair can be represented as pe = [te1 ⊕ te2].
Because the dimension of word embeddings is 300, the di-

mension of te is 300 and the dimension of pe is 600. After

that, pe is fed into a fully connected layer to produce an entity

vector representation (denoted as vt).

3) Representation Fusion: The output of two parts of

context-wise similarity network: vctx is a representation of

context pair, and vt is a representation of entity pair. We need

to fuse two representations to obtain semantic information in

both sentence level and word level. The output is the label

which represents whether two entities are coreferent.

2https://dumps.wikimedia.org/

183

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 10,2023 at 13:43:36 UTC from IEEE Xplore. Restrictions apply.

First, we concatenate vctx and vt (vf = [vctx ⊕ vt]). Then

we input vf into MLP. MLP has three layers:

• A fully connected layer, which is to fuse vctx and vt
into one vector by w�vf , where w is a learned parameter

vector. w can be trained to make a trade-off between vctx
and vt.

• A dropout layer, which is used to avoid over-fitting [44]

by randomly masking some neuron cells.

• An output layer, which transforms the vector into a

2-dimensional vector [s1, s2], representing two labels

(coreferent or non-coreferent).

The output of MLP is a similarity measure [s1, s2] that

represents the scores of the two classes respectively, where

si ∈ R. Finally, we perform softmax on this 2-dimensional

vector, which can be specified as:

Softmax(si) =
esi

∑2
j=1 e

sj

Then [s1, s2] can be normalized to probabilities [p, 1 − p],
where p ∈ [0, 1].

C. Implementation

We implement our approach DEEPCOREF using Transform-

ers3 which is an open-source library for Natural Language Un-

derstanding (NLU) and Natural Language Generation (NLG)

with over 32+ pre-trained models built on Pytorch4.

Training Details: As for some crucial settings, the learning

rate is set 10−5. The optimizer is Adam [45] algorithm. We use

the mini-batch technique for speeding up the training process

with batch size 8. The drop rate is 0.1, which means 10%

of neuron cells will be randomly masked to avoid over-fitting.

Since the task is a classification problem, we use cross-entropy

as the loss function, which is specified as:

Loss =
∑

x

p(x) · log(1

q(x)
)

where p(x) and q(x) are the probability distribution of pre-

dicted label and ground-truth label respectively.

The design of the context-wise similarity network makes all

parameters jointly fine-tuned on a specific task (e.g., similarity

classification), which can benefit from large corpora pre-

training in a relatively inexpensive way. It also alleviates insuf-

ficient annotated resource problems to some extent. Parameters

in BERT are fine-tuned to obtain a better context represen-

tation according with specific tasks and data. Parameters in

Word2Vec-based network are trained to obtain a better entity

representation based on pre-trained word embeddings. Param-

eters in MLP are trained to better fuse both representations,

and make a trade-off between two representations to reach a

more accurate classification result.

3https://github.com/huggingface/transformers
4https://pytorch.org

IV. EXPERIMENT DESIGN

A. Research Questions

Our evaluation addresses the following three research ques-

tions.

• RQ1 (Advantage) Can DEEPCOREF outperform existing

techniques on coreference detection?

To investigate the advantage of our approach, we conduct

10-fold cross-validation on EC detection using data from our

industry partner. We compare the performances of three base-

lines (see Section IV-C). These approaches include syntactic

or semantic similarity measures to detect coreference on word

level or sentence level. We compare these approaches to

demonstrate the advantage of combining context and entity

representations. Besides, we also present statistical results by

the project to examine the stability and generalizability across

different projects.

• RQ2 (Effectiveness) How effective does each component

facilitate EC detection?

To examine the performance enhancement introduced by

context representations and entity representations respectively,

we construct three variants: DEEPCOREF-ctx, which only

contains the fine-tuning BERT model for context represen-

tations without the Word2Vec-based network for entity rep-

resentations. DEEPCOREF-entity, which is totally opposite

to DEEPCOREF-ctx only with Word2Vec-based network but

BERT model (see Section IV-D). In addition, to demon-

strate the advantage of fine-tuning BERT over IR-based tech-

nique for context representations, we build DEEPCOREF-
LSI by repacing the BERT with LSI to produce context

vectors. We conduct 10-fold cross-validation on DEEPCOREF,

DEEPCOREF-ctx, DEEPCOREF-entity, and DEEPCOREF-LSI

respectively to demonstrate the effectiveness for combining

two representations.

• RQ3 (Sensitivity) To what degree does data size influ-

ence experimental results?

In RQ3, we conduct an experiment by increasingly en-

larging the size of data to examine the sensitivity between

performance enhancement and data augmentation. The amount

of data verifies whether fine-tuning approaches can alleviate

low-resource problem.

B. Data Preparation

Our experimental data is collected from the repositories

of China Merchants Bank (CMB)5. We retrieve 21 projects

from its repository, and each project has a set of requirement

texts with corresponding entities that occurred in that text.

The total number of text-entity pairs is 1949. The entities

are recognized by requirement engineers, audited by project

management department and well-maintained through the re-

quirement evolution. We prepare data in the following steps:

5It is one of the world’s top five hundred commercial banks.

184

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 10,2023 at 13:43:36 UTC from IEEE Xplore. Restrictions apply.

1) Pre-processing: For each entity and its related require-

ment text, we filter noisy tokens such as URL, HTML tags and

SQL statements using regular expressions. These tokens are

produced by their management system but not removed when

dumped from the system. Then we filter template words (e.g.,

“I would like to”) which cannot contribute to the result but

introduce noise, especially for contextual semantic similarity.

2) Sampling: After pre-processing, we truncate the context

for each entity, which is demonstrated in Section III-A. We

obtain 1949 〈context, entity〉 (denoted as ctx-entity pair)

pairs in total across all projects. Entities from different projects

are definitely different no matter how similar their semantics

are, so we sample two ctx-entity (e.g., 〈ctx-entity1, ctx-

entity2〉) from the same project in a combination way. The

combination step is to build relations among 〈context, entity〉
pairs for assigning labels.

3) Ground-truth Labeling: These requirements and entities

are domain-specific, so it is challenging for data labeling. To

guarantee the accuracy of the labeling results, the labeling pro-

cess follows two steps: 1) The project management department

of CMB assigns samples (e.g., 〈ctx-entity1, ctx-entity2〉
pairs) as well as original requirement texts for reference to

requirement engineers according to the project team so that

each annotator can label the samples belonging to his/her own

products. 2) The labeling results withdrawn from each project

team are reviewed by the project management department.

Only those samples where both teams make a full agreement

can be included in our dataset. As for samples which are

annotated to different labels, two teams would discuss and

decide through voting.

The two classes are extremely imbalanced (e.g., the ma-

jority of the samples are non-coreferent) after labeling. We

use under-sampling technique to balance two classes. Fi-

nally, we obtain 1853 labeled samples (〈ctx-entity1, ctx-

entity2, label〉). The positive labels (897, 48.41%) mean ctx-

entity1 and ctx-entity2 are coreferent, negative labels (956,

51.59%) for non-coreference.

C. Baselines

To further demonstrate the advantages of DEEPCOREF, we

compare it with three commonly-used techniques for corefer-

ence detection.

Word2Vec: Ferrari et al. [3] present an approach based on

word embeddings to support the identification of potentially

ambiguous terms in the context of requirements elicitation

interviews and group meetings. The “terms” in their context

is still word-level, or the word itself is a phrase processed by

word segment or text chunking. Word embedding provides a

good semantic representation on word level. However, in our

work, entities are not just single words but several words. We

use an average of word embeddings to represent an entity, and

then compute a similarity score for coreference detection.

LSI: Falessi et al. [17] use LSI to identify equivalent re-

quirements after comparing several NLP techniques on a given

dataset. It is an IR-based semantic sentence-level approach

for representing a set of documents as vectors in a common

vector space. LSI has been employed in a wide range of

software engineering activities such as categorizing source

code files [46], detecting high-level conceptual code clones

[47], and recovering traceability links between documentation

and source code [48], which is considered to be able to resolve

the polysemy problem as well [49]–[51]. We build an LSI

model to demonstrate its capability for context representations.
Levenstein: It is a syntactic similarity measure by calcu-

lating a score for a given pair of entities by finding the best

sequence of edit operations to convert one entity into the other

[19], [20]. We use the implementation in library Distance6.

D. Experimental Setup
We conduct 10-fold cross-validation [52] on the dataset

collected from CMB in RQ1 and RQ2. We randomly divide

our dataset into ten parts. We use nine of those parts for

training and reserve one part for testing. We repeat this

procedure 10 times each time reserving a different part for

testing. All the experiments are conducted based on the same

data folds to avoid the impact of different data partitions. In

RQ3, we randomly split data into the training set and testing

set according to a training set ratio, which indicates that we

use the ratio percentage of data to train model and evaluate

the remaining testing set. The experimental environment is a

desktop computer equipped with a NVIDIA 1060 GPU, intel

core i7 CPU, 16GB RAM, running on Ubuntu OS.
Experiment I (Advantage): To demonstrate the advantage

of DEEPCOREF, we compare the performance of DEEPCOREF

with three approaches (Word2Vec, LSI, Levenstein distance).

Word2Vec uses an average of word embeddings to repre-

sent an entity which is to investigate the performance of

entity representation with word embeddings. LSI is built on

the concatenation of both context and entity to investigate

the performance of the combination of context and entity

representation with LSI. Levenstein is used to measure the

distance between entities to investigate the performance of

simple syntactic approaches. The output of Levenstein is a

similarity score. The outputs of Word2Vec and LSI are vector

representations, and subsequently, we infer the predicted label

by computing similarity score via cosine similarity [53]. So

we need a similarity ratio to decide whether two entities are

coreferent, which should be tuned carefully. We set the ratio

of Word2Vec, LSI and Levenstein as 0.85, 0.67 and 0.25

respectively. We investigate the ratio selection in Section VI-A.

In addition, we give statistical results by the project to examine

the stability and generalizability across different projects.
Experiment II (Effectiveness): We demonstrate the per-

formance enhancement introduced by each component by

constructing DEEPCOREF-ctx and DEEPCOREF-entity. DEEP-

COREF-ctx only keeps BERT model and DEEPCOREF-entity

only keeps Word2Vec network. In addition, we build DEEP-

COREF-LSI, which is a variant of DEEPCOREF by replacing

the BERT with LSI, and other parts remain unchanged. DEEP-

COREF-LSI is to demonstrate the performance enhancement

from BERT for computing context representation.

6https://github.com/doukremt/distance

185

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 10,2023 at 13:43:36 UTC from IEEE Xplore. Restrictions apply.

Experiment III (Sensitivity): We conduct an experiment by

increasingly enlarging the size of data to examine the sensitiv-

ity between performance enhancement and data augmentation.

We present the time consumption of each experiment as well.

The experiment is conducted by splitting all data into two

parts (training set and testing set) randomly according to the

training set ratio which is increased from 5% to 90%. For

each ratio, we perform five experiments with a boxplot to

show the evaluation metrics, and take the average time of five

experiments as consuming time.

E. Evaluation Metrics

We use precision recall, and F1-Score, which are

commonly-used metrics, to evaluate the performance of DEEP-

COREF. We mentioned that we collect and annotate data in

cooperation with CMB (see Section IV-B). Given the ground-

truth label and predicted label from DEEPCOREF, we compute

the metrics of all testing data for each round of 10-fold cross-

validation to measure the performance. As for the performance

by the project in RQ1, we compute the metrics for each

project.

1) Precision, which refers to the ratio of the number of

correct predictions of positive labels to the total number of

predictions of positive labels. 2) Recall, which refers to the

ratio of the number of correct predictions of positive labels to

the total number of positive labels. 3) F1-Score, which is the

harmonic mean of precision and recall.

We calculate metrics for each label and take their un-

weighted mean as final results. In addition, some baseline

approaches need to measure the similarity to decide whether

two entities are coreferent, so we use cosine similarity [53] to

compute the distance between two vector representations.

V. RESULTS AND ANALYSIS

A. Answering RQ1: Advantage of DEEPCOREF

Figure 4 presents the EC detection performance on DEEP-

COREF and baselines respectively across the 10-fold cross-

validation. We can see that DEEPCOREF can achieve 96.10%

precision and 96.06% recall on average, which are much

higher than other baselines. The precision and recall of

Word2Vec are 84.57% and 84.21% respectively, LSI 84.12%

and 84.01%, Levenstein 84.65% and 83.46%. In addition, the

length of the box of DEEPCOREF is relatively lower than

baselines, further signifying the stability of the performance.

Figure 5 presents the precision and recall by 21 projects.

We can see both precision and recall of DEEPCOREF are more

stable and higher than other baselines across projects. The

text presentation styles are distinct in different projects, so the

results of Word2Vec and Levenstein indicate large differences

in performance on different projects. These two approaches

lack sentence-level information of context, thus cannot capture

the contextual semantic differences across projects only using

entity information. LSI fluctuates largely in several projects

although it can capture the sentential context semantics. This

is mainly because LSI is constructed based on statistical

information on current training data, the representation ability

Fig. 4. RQ1: The advantage of DEEPCOREF over baselines. The cross is the
mean value of 10-fold cross validation.

is less powerful than models pre-trained on large corpora

and fine-tuned with training data. By contrast, DEEPCOREF

which is more stable, obtains a more powerful representation

by combining the context semantics, thus more adaptable to

different presentation styles.

The reasons why DEEPCOREF noticeably outperforms the

three baselines are: 1) DEEPCOREF uses both sentence-level

and word-level semantics thus can capture more information

from contexts and entities. 2) DEEPCOREF uses pre-trained

models thus can benefit from large general corpora pre-

training. 3) DEEPCOREF uses the fine-tuning technique, which

can improve adaptation on domain-specific tasks.

B. Answering RQ2: Effectiveness of DEEPCOREF

Figure 6 presents the performance on DEEPCOREF and

three variants respectively across the 10-fold cross-validation.

The average of precision and recall of DEEPCOREF-ctx reach

79.83% and 68.21%, DEEPCOREF-entity 63.17% and 61.77%,

DEEPCOREF-LSI 66.25% and 62.62% respectively. The per-

formance of DEEPCOREF is much higher and more stable than

three variants.

The comparison among DEEPCOREF, DEEPCOREF-ctx and

DEEPCOREF-entity indicates the performance enhancement

from different components. More specifically, the fine-tuning

BERT model improves the performance of precision and recall

by 32.93% and 34.29% (differences between DEEPCOREF and

DEEPCOREF-entity). The Word2Vec-based network improves

performance by 16.27% and 27.85% (differences between

DEEPCOREF and DEEPCOREF-ctx). The comparison between

DEEPCOREF-ctx and DEEPCOREF-entity indicates that con-

text semantics are more effective than entity semantics. The

improvement of precision and recall reaches 16.66% and

6.44% respectively. The comparison between DEEPCOREF

and DEEPCOREF-LSI indicates the stronger contextual rep-

resentation from BERT than LSI, where the improvement

reaches 29.85% and 33.44% respectively.

186

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 10,2023 at 13:43:36 UTC from IEEE Xplore. Restrictions apply.

(a) Precision (b) Recall

Fig. 5. RQ1: The advantage of DEEPCOREF over baselines by project. The number of projects is 21.

Fig. 6. RQ2: The performance of DEEPCOREF and its variants. The cross is
the mean value of 10-fold cross validation.

In summary, each component of our network improves the

performance to varying degrees. The combination can obtain

a quite promising performance. The application of fine-tuning

BERT model significantly enhances performance.

C. Answering RQ3: Sensitivity of DEEPCOREF

Figure 7 represents the relationship between performance

and time consumption of DEEPCOREF when enlarging the size

of the training set. When the training set ratio increases from

5% to 90%, the performance of DEEPCOREF rises sharply

before 20% and has a small increase later. The variance of

data at each point after 40% is also similar. The last point is

the results coming from RQ1 for comparison, which shows the

best performance. The results indicate that DEEPCOREF is not

very sensitive after the training data is greater than 60% (i.e.,

around 1100 in our experimental settings). Moreover, we can

find that just using 20% data to train, the performance is also

greater than 92% on average. It demonstrates that DEEPCOREF

can address the low-resource problem well. In addition, the

Fig. 7. RQ3: The performance of DEEPCOREF by data augmentation. The
dotted line is time consuming.

time consumption increases approximatively linearly from

159.42s to 412.52s.

In summary, benefiting from large corpora pre-training and

the fine-tuning technique, DEEPCOREF can reach a promising

performance on a relatively small dataset.

VI. DISCUSSION

A. Parameter Settings on Baselines

The performances of baselines are affected by the value

selection of similarity ratios. Here we discuss the parameter

determination process in our experiments. To achieve the

best performance of these baselines, we conduct a set of

experiments to find the sweet parameters. The best parameter

settings are used in the comparison. Baselines are similarity-

based methods, which are sensitive to the value of the ratio,

so the parameter we analyze is similarity ratio. We vary the

values of similarity ratios for Word2Vec, LSI, and Levenstein

respectively, and evaluate their impact on the performance.

187

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 10,2023 at 13:43:36 UTC from IEEE Xplore. Restrictions apply.

(a) Word2Vec (b) LSI (c) Levenstein

Fig. 8. The boxplot changing curve of F1-Score with the similarity ratio increasing from 0 to 1 by step 0.03 for each approach. Each box contains results
of one 10-fold cross validation.

We present the box-plot changing curve (each box includes

10 results from 10-fold cross-validation) of F1-Score for each

approach, when the ratio increases in [0, 1] by step 0.01 (for

readability, the step in the figure is 0.03). We also present the

optimal value of the ratio for each round of 10-fold cross-

validation of each approach. The final similarity ratio of each

approach is computed by an average of 10 optimal values.

Figure 8 shows the F1-Score when the similarity ratio

increases from 0 to 1 for each baseline. We can see that the

ratio can influence the performance of these similarity-based

approaches significantly, and the optimal values are distinct for

each approach. Generally with the increase of similarity ratio,

the F1-Score first rises and then declines for all approaches.

Nevertheless, this general trend exhibits a slight difference

among these approaches. For Word2Vec, the curve is steep,

rising when the ratio is less than 0.85 and declining after

that, which means that the optimal values of the ratio are

stable around 0.85 for each round of 10-fold cross-validation.

For LSI, the curve rises slowly before 0.5, then keeps steady

between 0.5 and 0.7, and finally declines after 0.7. This means

that the optimal values fluctuate in the interval (0.5, 0.7) for

all rounds. For Levenstein, the cure rises dramatically before

0.25, then declines slowly between 0.25 and 0.65, and declines

dramatically after 0.65. The optimal values are around 0.25.

For each round of 10-fold cross-validation, the optimal

similarity ratios of Word2Vec and Levenstein are the same

values of 0.85 and 0.25 respectively, while the optimal ratio

of LSI fluctuates slightly around 0.67, which is consistent with

changing curves in Figure 8. The final ratio is computed by the

average of these optimal values, where the ratios of Word2Vec,

LSI and Levenstein are 0.85, 0.67 and 0.25. Hence one should

carefully tune the similarity ratios for each approach, in order

to achieve the best performance for a fair comparison.

B. Applicability

We list some key points when applying our method: 1) Our

method is evaluated on short texts, where contexts can contain

enough semantic information. When applying to long texts,

some contexts truncated by window may lack useful infor-

mation which is far from entities. Tuning window size might

alleviate the problem. 2) Our data is from financial domain.

One should annotate about 1000 samples for fine-tuning the

whole model to tackle domain adaption. 3) The entities in our

data are ready-made. If somenone wants to apply our method

but has no entities, he/she needs to extract entities firstly using

mature NLP techniques such as text trunking [20], [21] and

POS patterns [40]. However, the error brought by these tools

needs manual correction inevitably. 4) When applying to other

languages, BERT and word embeddings must be pre-trained

on corpus of corresponding language.

VII. THREATS TO VALIDITY

External Validity: The external threats are related to the

generalizability of the approach. Although the data is collected

from the industry community, we retrieve as many projects as

possible. The evaluation results by projects show that our ap-

proach is generalizable across projects, which largely alleviates

the threat. In addition, our approach uses models pre-trained

on large general corpus and the fine-tuning technique, which

alleviates the low-resource and generalizability problem.

Internal Validity: The internal threats relate to experimen-

tal errors and biases. Threats to internal validity may come

from the entity generation. The entities in our data are ready-

made and well-maintained by our industry partners, which has

a slight impact on our results.

Construct Validity: The construct threats relate to the

suitability of evaluation metrics. We utilize precision and recall

for evaluation, where we use cosine similarity to measure

whether two entities are coreferent. The threats might come

from the selection of similarity ratio. To reduce that threat, we

perform an experiment on tuning ratios and use the average of

optimal values as ratios (see Section VI-A). In addition, both

predictive positive and negative labels are equally important

in predictions, so we calculate the evaluation metrics for each

label and take their unweighted mean as final results.

VIII. RELATED WORK

Our work is related to previous studies that focused on 1)

detection of inconsistency in requirements written in natural

language; and 2) coreference resolution. We briefly review the

recent works in each category.

188

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 10,2023 at 13:43:36 UTC from IEEE Xplore. Restrictions apply.

A. Detection of Inconsistency

The amount of research on inconsistency detection has

increased significantly in the past years. Mezghani et al. [5]

used unsupervised machine learning algorithm, k-means, for

a redundancy and inconsistency detection in the RE context.

They introduced a filtering approach to eliminate “noisy”

requirements and a pre-processing step based on the NLP

technique and used POS tagging and noun chunking to detect

technical business terms. PBURC [16] is a pattern-based

unsupervised requirements clustering framework (based on

k-means algorithm), which makes use of machine-learning

methods for requirements validation. The approach aimed

to overcome data inconsistencies and effectively determine

appropriate requirements clusters for the optimal definition of

software development sprints. Traditional techniques such as

bag-of-words (BOW), Term Frequency and Inverse Document

Frequency (TF-IDF) frequency matrix and n-gram language

modeling were firstly used on redundancy detection. Juergens

et al. [54] found that clone detection, a technique widely

applied to source code, is promising to assess redundancy in

an automated way. They used ConQAT to identify copy&paste

operations in software requirements specifications. Falessi et

al. [17] conjectured and assessed that NLP techniques iden-

tifying equivalent requirements perform on a given dataset

according to both ability and the odds of making correct

identification. Also, they proposed a set of seven principles

for evaluating the performance of NLP techniques in identi-

fying equivalent requirements. They used IR methods such as

Latent Semantic Analysis. Rago et al. [55] introduced a novel

approach called ReqAligner that aids analysts to spot signs of

duplication in use cases in an automated fashion. ReqAligner

combines several text processing techniques, such as a use case

classifier and a customized algorithm for sequence alignment.

Ambiguity is usually related to inconsistency. In the litera-

ture, many works have been proposed to tackle the problem of

ambiguity in written requirements. Ferrari et al. [3] presented

an NLP approach to identify ambiguous terms between differ-

ent domains and rank them by ambiguity score. The approach

is based on building domain-specific language models in each

domain. They compared different word embeddings of one

identical term from different domains to estimate its potential

ambiguity across the domains of interest. There are some

works using special terms and expressions with different POS

or patterns [8]–[13]. Other works use heuristics to tackle

coordination ambiguities (i.e., ambiguities brought by “and” or

“or” conjunctions) [14] and anaphoric ones (i.e., ambiguities

brought by pronouns) [15].

Our work complements to the existing researches in two

aspects: 1) It is a method to resolving EC in RE. Detecting

EC can improve the readability and understandability of re-

quirements. 2) It is a deep learning approach, which is more

powerful and generic.

B. Coreference Resolution

Our work is inspired by CDCR, so we review representative

works on CR in recent years. For WDCR, Lee et al. [35]

introduced the first end-to-end coreference resolution model

without using a syntactic parser or handengineered mention

detector. The key idea is to directly consider all spans in

a document as potential mentions and learn distributions

over possible antecedents for each. Joshi et al. [56] fine-

tuned BERT to coreference resolution, achieving the state-of-

the-art performance. However, they considered there is still

room for improvement in modeling document-level context,

conversations, and mention paraphrasing. As for CDCR, Lee et

al. [57] introduced a novel coreference resolution system that

models entities and events jointly by iteratively constructing

clusters of entity and event mentions using linear regression to

model cluster merge operations. The joint formulation allowed

information from event coreference to help entity coreference,

and vice versa. Inspired by [57], Barhom et al. [37] proposed a

neural architecture for cross-document coreference resolution,

which represents an event (entity) mention using its lexical

span, surrounding context, and relation to entity (event) men-

tions via predicate-arguments structures.

CR presented in our work related to RE differs from NLP

in two aspects: 1) Requirements in RE are domain-specific, so

we cannot directly benefit from large general corpora or public

knowledge bases. 2) In RE, the requirements and entities are

related to a specific domain, where data annotation needs

domain expertise and intensive manual effort. In our work,

we use fine-tune technique and pre-training models to tackle

these pivotal challenges.

IX. CONCLUSION AND FUTURE WORK

This paper resolves entity coreference in requirement engi-

neering. We propose a DEEP context-wise semantic method

named DEEPCOREF for entity COREFerence detection. It

consists of two parts: one is a fine-tuning BERT model for

context representation, and the other is a Word2Vec-based

network for entity representation. Then a multi-layer percep-

tron is followed to fuse and make a trade-off between two

representations in order to obtain a better representation of the

entity. We investigate the effectiveness of DEEPCOREF with

1853 samples on 21 projects from the industry community.

The experimental results show that our approach significantly

outperforms three baselines with average precision and recall

of 96.10% and 96.06% respectively. In order to demonstrate

the performance enhancement from different components, we

compare DEEPCOREF with three variants as well.

In the future, we plan to add some event features into the

entity representations based on what we have proposed in this

work, because event information can help distinguish entities

more precisely.

ACKNOWLEDGMENTS

This work is supported by the National Key Research and

Development Program of China under grant No.2018YFB140-

3400, the National Science Foundation of China under grant

No.61802374, No.61432001, No.61602450. This work is also

supported by China Merchants Bank Intelligent Software

Research and Development Effectiveness Research Project.

189

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 10,2023 at 13:43:36 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] M. E. C. Hull, K. Jackson, and J. Dick, Requirements Engineering.
Springer London, 2002.

[2] X. Lian, M. Rahimi, J. Cleland-Huang, L. Zhang, R. Ferrai, and
M. Smith, “Mining requirements knowledge from collections of domain
documents,” in 24th IEEE International Requirements Engineering
Conference, RE 2016, Beijing, China, September 12-16, 2016. IEEE
Computer Society, 2016, pp. 156–165.

[3] A. Ferrari and A. Esuli, “An NLP approach for cross-domain ambiguity
detection in requirements engineering,” Autom. Softw. Eng., vol. 26,
no. 3, pp. 559–598, 2019.

[4] J. Cleland-Huang, “Mining domain knowledge [requirements],” IEEE
Software, vol. 32, no. 3, pp. 16–19.

[5] M. Mezghani, J. Kang, and F. Sèdes, “Industrial requirements classifi-
cation for redundancy and inconsistency detection in SEMIOS,” in 26th
IEEE International Requirements Engineering Conference, RE 2018,
Banff, AB, Canada, August 20-24, 2018, G. Ruhe, W. Maalej, and
D. Amyot, Eds. IEEE Computer Society, 2018, pp. 297–303.

[6] D. M. Fernández, S. Wagner, M. Kalinowski, M. Felderer, P. Mafra,
A. Vetro, T. Conte, M. Christiansson, D. Greer, C. Lassenius,
T. Männistö, M. Nayabi, M. Oivo, B. Penzenstadler, D. Pfahl, R. Prik-
ladnicki, G. Ruhe, A. Schekelmann, S. Sen, R. O. Spı́nola, A. Tuzcu,
J. L. de la Vara, and R. J. Wieringa, “Naming the pain in requirements
engineering - contemporary problems, causes, and effects in practice,”
Empirical Software Engineering, vol. 22, no. 5, pp. 2298–2338, 2017.

[7] F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami, “The linguistic approach
to the natural language requirements quality: Benefits of the use of an
automatic tool,” in Software Engineering Workshop, 2001. Proceedings.
26th Annual NASA Goddard, 2001.

[8] D. M. Berry and E. Kamsties, “The syntactically dangerous all and plural
in specifications,” IEEE Software, vol. 22, no. 1, pp. 55–57, 2005.

[9] S. F. Tjong and D. M. Berry, “The design of SREE - A prototype
potential ambiguity finder for requirements specifications and lessons
learned,” in Requirements Engineering: Foundation for Software Quality
- 19th International Working Conference, REFSQ 2013, Essen, Germany,
April 8-11, 2013. Proceedings, ser. Lecture Notes in Computer Science,
J. Dörr and A. L. Opdahl, Eds., vol. 7830. Springer, 2013, pp. 80–95.

[10] B. Gleich, O. Creighton, and L. Kof, “Ambiguity detection: Towards a
tool explaining ambiguity sources,” in Requirements Engineering: Foun-
dation for Software Quality, 16th International Working Conference,
REFSQ 2010, Essen, Germany, June 30 - July 2, 2010. Proceedings,
ser. Lecture Notes in Computer Science, R. J. Wieringa and A. Persson,
Eds., vol. 6182. Springer, 2010, pp. 218–232.

[11] B. Rosadini, A. Ferrari, G. Gori, A. Fantechi, S. Gnesi, I. Trotta, and
S. Bacherini, “Using NLP to detect requirements defects: An industrial
experience in the railway domain,” in Requirements Engineering: Foun-
dation for Software Quality - 23rd International Working Conference,
REFSQ 2017, Essen, Germany, February 27 - March 2, 2017, Pro-
ceedings, ser. Lecture Notes in Computer Science, P. Grünbacher and
A. Perini, Eds., vol. 10153. Springer, 2017, pp. 344–360.

[12] H. Femmer, J. Kucera, and A. Vetro, “On the impact of passive
voice requirements on domain modelling,” in 2014 ACM-IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement,
ESEM ’14, Torino, Italy, September 18-19, 2014, M. Morisio, T. Dybå,
and M. Torchiano, Eds. ACM, 2014, pp. 21:1–21:4.

[13] H. Femmer, D. M. Fernández, S. Wagner, and S. Eder, “Rapid quality
assurance with requirements smells,” Journal of Systems and Software,
vol. 123, pp. 190–213, 2017.

[14] F. Chantree, B. Nuseibeh, A. De Roeck, and A. Willis, “Identifying
nocuous ambiguities in natural language requirements,” in 14th IEEE
International Requirements Engineering Conference (RE’06), 2006.

[15] H. Yang, A. De Roeck, V. Gervasi, A. Willis, and B. Nuseibeh,
“Analysing anaphoric ambiguity in natural language requirements,”
Requir. Eng., vol. 16, no. 3, pp. 163–189, 2011.

[16] P. Belsis, A. Koutoumanos, and C. Sgouropoulou, “PBURC: a patterns-
based, unsupervised requirements clustering framework for distributed
agile software development,” Requir. Eng., vol. 19, no. 2, pp. 213–225,
2014.

[17] D. Falessi, G. Cantone, and G. Canfora, “Empirical principles and an
industrial case study in retrieving equivalent requirements via natural
language processing techniques,” IEEE Trans. Software Eng., vol. 39,
no. 1, pp. 18–44, 2013.

[18] W. W. Cohen, P. Ravikumar, and S. E. Fienberg, “A comparison of string
distance metrics for name-matching tasks,” in Proceedings of IJCAI-03
Workshop on Information Integration on the Web (IIWeb-03), August
9-10, 2003, Acapulco, Mexico, S. Kambhampati and C. A. Knoblock,
Eds., 2003, pp. 73–78.

[19] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Informa-
tion Retrieval, 2010.

[20] C. Arora, M. Sabetzadeh, L. C. Briand, and F. Zimmer, “Automated
extraction and clustering of requirements glossary terms,” IEEE Trans.
Software Eng., vol. 43, no. 10, pp. 918–945, 2017.

[21] T. Gemkow, M. Conzelmann, K. Hartig, and A. Vogelsang, “Automatic
glossary term extraction from large-scale requirements specifications,”
in 26th IEEE International Requirements Engineering Conference, RE
2018, Banff, AB, Canada, August 20-24, 2018, 2018, pp. 412–417.

[22] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in Neural Information Processing Systems 26:
27th Annual Conference on Neural Information Processing Systems
2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe,
Nevada, United States, 2013, pp. 3111–3119.

[23] J. P. Turian, L. Ratinov, and Y. Bengio, “Word representations: A
simple and general method for semi-supervised learning,” in ACL
2010, Proceedings of the 48th Annual Meeting of the Association for
Computational Linguistics, July 11-16, 2010, Uppsala, Sweden, J. Hajic,
S. Carberry, and S. Clark, Eds. The Association for Computer
Linguistics, 2010, pp. 384–394.

[24] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” in 1st International Conference on
Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May
2-4, 2013, Workshop Track Proceedings, Y. Bengio and Y. LeCun, Eds.,
2013.

[25] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2014,
October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL, A. Moschitti, B. Pang, and W. Daelemans,
Eds. ACL, 2014, pp. 1532–1543.

[26] Z. S. Harris, “Distributional structure,” WORD, vol. 10, no. 2-3, pp.
146–162, 1954.

[27] X. Chen, Z. Liu, and M. Sun, “A unified model for word sense repre-
sentation and disambiguation,” in Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2014,
October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL, A. Moschitti, B. Pang, and W. Daelemans,
Eds. ACL, 2014, pp. 1025–1035.

[28] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. P.
Kuksa, “Natural language processing (almost) from scratch,” J. Mach.
Learn. Res., vol. 12, pp. 2493–2537, 2011.

[29] O. Melamud, D. McClosky, S. Patwardhan, and M. Bansal, “The role
of context types and dimensionality in learning word embeddings,” in
NAACL HLT 2016, The 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, San Diego California, USA, June 12-17, 2016, K. Knight,
A. Nenkova, and O. Rambow, Eds. The Association for Computational
Linguistics, 2016, pp. 1030–1040.

[30] O. Melamud, J. Goldberger, and I. Dagan, “context2vec: Learning
generic context embedding with bidirectional LSTM,” in Proceedings
of the 20th SIGNLL Conference on Computational Natural Language
Learning, CoNLL 2016, Berlin, Germany, August 11-12, 2016, 2016,
pp. 51–61.

[31] H. Palangi, L. Deng, Y. Shen, J. Gao, X. He, J. Chen, X. Song, and R. K.
Ward, “Deep sentence embedding using the long short term memory
network: Analysis and application to information retrieval,” CoRR, vol.
abs/1502.06922, 2015.

[32] Q. V. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in Proceedings of the 31th International Conference on
Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014, ser.
JMLR Workshop and Conference Proceedings, vol. 32. JMLR.org,
2014, pp. 1188–1196.

[33] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language

190

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 10,2023 at 13:43:36 UTC from IEEE Xplore. Restrictions apply.

Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7,
2019, Volume 1 (Long and Short Papers), 2019, pp. 4171–4186.

[34] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, 4-9 December 2017, Long
Beach, CA, USA, I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach,
R. Fergus, S. V. N. Vishwanathan, and R. Garnett, Eds., 2017, pp. 5998–
6008.

[35] K. Lee, L. He, M. Lewis, and L. Zettlemoyer, “End-to-end neural
coreference resolution,” in Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2017,
Copenhagen, Denmark, September 9-11, 2017, M. Palmer, R. Hwa, and
S. Riedel, Eds. Association for Computational Linguistics, 2017, pp.
188–197.

[36] G. R. Doddington, A. Mitchell, M. A. Przybocki, L. A. Ramshaw,
S. M. Strassel, and R. M. Weischedel, “The automatic content extraction
(ACE) program - tasks, data, and evaluation,” in Proceedings of the
Fourth International Conference on Language Resources and Evalu-
ation, LREC 2004, May 26-28, 2004, Lisbon, Portugal. European
Language Resources Association, 2004.

[37] S. Barhom, V. Shwartz, A. Eirew, M. Bugert, N. Reimers, and I. Da-
gan, “Revisiting joint modeling of cross-document entity and event
coreference resolution,” in Proceedings of the 57th Conference of
the Association for Computational Linguistics, ACL 2019, Florence,
Italy, July 28- August 2, 2019, Volume 1: Long Papers, A. Korhonen,
D. R. Traum, and L. Màrquez, Eds. Association for Computational
Linguistics, 2019, pp. 4179–4189.

[38] S. Beheshti, B. Benatallah, S. Venugopal, S. H. Ryu, H. R. Motahari-
Nezhad, and W. Wang, “A systematic review and comparative analysis of
cross-document coreference resolution methods and tools,” Computing,
vol. 99, no. 4, pp. 313–349, 2017.

[39] J. Lu and V. Ng, “Joint learning for event coreference resolution,”
in Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics, ACL 2017, Vancouver, Canada, July 30 -
August 4, Volume 1: Long Papers, R. Barzilay and M. Kan, Eds.
Association for Computational Linguistics, 2017, pp. 90–101.

[40] T. Johann, C. Stanik, A. M. A. B., and W. Maalej, “SAFE: A simple
approach for feature extraction from app descriptions and app reviews,”
in 25th IEEE International Requirements Engineering Conference, RE
2017, Lisbon, Portugal, September 4-8, 2017, 2017, pp. 21–30.

[41] E. H. Huang, R. Socher, C. D. Manning, and A. Y. Ng, “Improving word
representations via global context and multiple word prototypes,” in The
50th Annual Meeting of the Association for Computational Linguistics,
Proceedings of the Conference, July 8-14, 2012, Jeju Island, Korea -
Volume 1: Long Papers, 2012, pp. 873–882.

[42] L. Logeswaran, M. Chang, K. Lee, K. Toutanova, J. Devlin, and H. Lee,
“Zero-shot entity linking by reading entity descriptions,” in Proceedings
of the 57th Conference of the Association for Computational Linguistics,
ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long
Papers, A. Korhonen, D. R. Traum, and L. Màrquez, Eds. Association
for Computational Linguistics, 2019, pp. 3449–3460.

[43] S. Li, Z. Zhao, R. Hu, W. Li, T. Liu, and X. Du, “Analogical reasoning
on chinese morphological and semantic relations,” in Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics,

[47] A. Marcus and J. I. Maletic, “Identification of high-level concept clones
in source code,” in 16th IEEE International Conference on Automated
Software Engineering (ASE 2001), 26-29 November 2001, Coronado
Island, San Diego, CA, USA, 2001, pp. 107–114.

ACL 2018, Melbourne, Australia, July 15-20, 2018, Volume 2: Short
Papers, 2018, pp. 138–143.

[44] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

[45] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015.

[46] J. I. Maletic and A. Marcus, “Using latent semantic analysis to identify
similarities in source code to support program understanding,” in 12th
IEEE International Conference on Tools with Artificial Intelligence
(ICTAI 2000), 13-15 November 2000, Vancouver, BC, Canada, 2000,
pp. 46–53.

[48] ——, “Recovering documentation-to-source-code traceability links us-
ing latent semantic indexing,” in Proceedings of the 25th International
Conference on Software Engineering, May 3-10, 2003, Portland, Oregon,
USA, 2003, pp. 125–137.

[49] A. Mahmoud and N. Niu, “On the role of semantics in automated
requirements tracing,” Requir. Eng., vol. 20, no. 3, pp. 281–300, 2015.

[50] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and
R. A. Harshman, “Indexing by latent semantic analysis,” JASIS, vol. 41,
no. 6, pp. 391–407, 1990.

[51] W. Wang, N. Niu, H. Liu, and Z. Niu, “Enhancing automated require-
ments traceability by resolving polysemy,” in 26th IEEE International
Requirements Engineering Conference, RE 2018, Banff, AB, Canada,
August 20-24, 2018, 2018, pp. 40–51.

[52] R. Kohavi, “A study of cross-validation and bootstrap for accuracy
estimation and model selection,” in Proceedings of the Fourteenth
International Joint Conference on Artificial Intelligence, IJCAI 95,
Montréal Québec, Canada, August 20-25 1995, 2 Volumes, 1995, pp.
1137–1145.

[53] W. Gomaa and A. A. Fahmy, “A survey of text similarity approaches,”
International Journal of Computer Applications, vol. 68, no. 13, 2013.

[54] E. Jürgens, F. Deissenboeck, M. Feilkas, B. Hummel, B. Schätz, S. Wag-
ner, C. Domann, and J. Streit, “Can clone detection support quality
assessments of requirements specifications?” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume
2, ICSE 2010, Cape Town, South Africa, 1-8 May 2010, J. Kramer,
J. Bishop, P. T. Devanbu, and S. Uchitel, Eds. ACM, 2010, pp. 79–88.

[55] A. Rago, C. A. Marcos, and J. A. Diaz-Pace, “Identifying duplicate
functionality in textual use cases by aligning semantic actions,” Software
and Systems Modeling, vol. 15, no. 2, pp. 579–603, 2016.

[56] M. Joshi, O. Levy, L. Zettlemoyer, and D. S. Weld, “BERT for
coreference resolution: Baselines and analysis,” in Proceedings of the
2019 Conference on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on Natural Language
Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-
7, 2019, K. Inui, J. Jiang, V. Ng, and X. Wan, Eds. Association for
Computational Linguistics, 2019, pp. 5802–5807.

[57] H. Lee, M. Recasens, A. X. Chang, M. Surdeanu, and D. Jurafsky,
“Joint entity and event coreference resolution across documents,” in
Proceedings of the 2012 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language
Learning, EMNLP-CoNLL 2012, July 12-14, 2012, Jeju Island, Korea,
J. Tsujii, J. Henderson, and M. Pasca, Eds. ACL, 2012, pp. 489–500.

191

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 10,2023 at 13:43:36 UTC from IEEE Xplore. Restrictions apply.

