
NERO: A Text-based Tool for Content Annotation
and Detection of Smells in Feature Requests

Fangwen Mu1,2, Lin Shi1,2∗, Wei Zhou1, Yuanzhong Zhang1, Huixia Zhao1

1Laboratory for Internet Software Technologies, Institute of Software Chinese Academy of Sciences, Beijing, China.
2University of Chinese Academy of Sciences, Beijing, China.

{fangwen, zhouwei, yuanzhong, huixia}@itechs.iscas.ac.cn, {shilin}@iscas.ac.cn

Abstract—Utilizing massive user feedback, e.g. feature requests
from Bugzilla, JIRA, or GitHub, to motivate software evolution
has become a new trend in RE community. However, manually
understanding and analyzing feature requests from issue tracking
systems is a time-consuming and labor-intensive task. In this
paper, we present NERO (coNtent annotation and smElly Feature
Requests detectiOn), an automated tool to support analysts to
understand the semantic meaning of feature requests and detect
the smells in feature requests. It can also provide an overall score
based on the smell detection results to help analysts quickly judge
the quality of feature requests.

Index Terms—Feature Request, Natural Language Process,
Smell Detection

I. INTRODUCTION

In the last years, a new trend in requirements engineering

is to motivate software evolution by gathering and analyzing

user feedback from the issue tracking systems. As a form

of user feedback, feature requests play an important role in

software maintenance and evolution. However, understanding

and analyzing feature requests from a large number of user

feedback in the issue tracking systems is a time-consuming and

labor-intensive task. First, due to there is no clear specification

that restricts the content or format of the feature requests in

open-source communities, expressiveness problems (such as

ambiguities, poor readability) inevitably appear in the feature

requests[1]. Second, the content of the feature requests is often

complex or confusing (may include hyper-links, code, or even

trivial sentences)[2], which also requires analysts to spend a lot

of time to understand the real intent of these feature requests.

In this paper, we propose NERO, a text-based tool that

supports automatic analysis of feature requests. First, we

classify each sentence in the feature requests into six seman-

tic categories (intent, explanation, advantages, disadvantages,

examples, and trivia) based on our previous work [2]. Then,

we summarize three categories of quality defects (what we call

feature requests smells) for expressiveness problems in feature

requests. We use natural language processing technologies to

detect these smells that we define. Finally, we leverage the

fuzzy comprehensive evaluation method to assess the quality

of feature requests based on the results of the smells detection.

II. THE NERO TOOL

The architecture of NERO is shown in Fig 1. Below, we

discuss its three main functionalities.

∗Corresponding author.

A. Content Annotation
The content annotation of the feature requests can help the

analysts to obtain the structural information of the feature

requests and to understand the semantic meaning of each

sentence. As shown in the “Content Analysis” part of Figure

1, we use a “rule matcher” containing the 81 fuzzy rules pro-

posed in the previous work [2] to classify each sentence into

six categories (intent, explanation, advantages, disadvantages,

examples, and trivia) that represent its semantic meaning. The

detailed definitions of the six categories are shown in Table

III in the appendix.

B. Smells Detection
Existing literatures propose quality criteria for feature re-

quests or the quality characteristics that “good” feature re-

quests should possess[1][3]. Unfortunately, they do not support

corresponding automated quality checks. Some quality prob-

lems in the quality criteria for feature requests require specific

domain knowledge to solve. Therefore, in this paper, we

focus on expressiveness problems in detecting feature requests.

Through the detection of smells about expressiveness problems

and the overall score can help requirements analysts improve

the detected smells and quickly filter out some inaccurate

and difficult to understand feature requests. We summary ten

smells that can be divided into three categories based on

existing quality criteria for feature requests[1] and requirement

quality models[4][5].

As shown in the “Smells Detection” part in Figure 1, we can

automatically detect these smells from textual feature requests

by leveraging various NLP techniques, such as GPT2 language

model, POS tagging, dependency parsing, Coleman formula.

The detailed explanations and detection methods of smells are

shown in the Table II in the appendix.

C. Overall Assessment
The overall assessment of the feature requests quality allows

the analysts to have a preliminary judgment on the quality of

the feature requests. They can prioritize clearly stated (high-

scoring) feature requests based on the overall score. As shown

in the “Overall Assessment” part in Figure1, we leverage

the fuzzy comprehensive evaluation (FCE) method and the

analytic hierarchy process (AHP) to assess the quality of

feature requests based on the results of the smells detection.

FCE method is a mathematical method based on fuzzy set

theory developed by Zadeh[6]. It comprehensively evaluate

400

2020 IEEE 28th International Requirements Engineering Conference (RE)

2332-6441/20/$31.00 ©2020 IEEE
DOI 10.1109/RE48521.2020.00056

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 10,2023 at 13:45:25 UTC from IEEE Xplore. Restrictions apply.

Content Analysis
Rule

matcher

81 Fuzzy
Rules

Intent, Benefit
Drawback, Trivia

Examples
Explanations

Semantic Meaning

Smells Detection

Overall Assessment

FCE &
AHP

Vagueness
Weakness

Coordination ambiguity
Referential ambiguity

Generality Passive
voice Unreadability

keyword
glossary &

Lemmatization

POS
tagging

GPT2 LM &
Coleman-

Liau formula

Dependency
parsing

Regular
expressions

Partial
Content

Weighted
analysis

Missing
condition

Missing
description

FRs

Fig. 1. The Overview of NERO

things that are not easy to be clearly defined in the real world

by using the thinking and methods of fuzzy mathematics. The

AHP was developed by Saaty[7] and has been used to de-

termine the weights of different influencing factors during the

evaluation process. In this paper, the quality of feature requests

is affected by three smells, and the impact of each of these

three smells on quality is difficult to estimate quantitatively.

Therefore, we use FCE method to assess the quality of feature

requests. We follow the steps of the FCE method in order:

determine a factor set, determine an evaluation set, use AHP

to determine the factor weights, determine the membership

function, and complete the overall score.
III. EVALUATION

To evaluate whether our tool can effectively assess the

expressiveness quality of feature requests, we rank ten feature

requests from the issue tracking system through manual scor-

ing by human analyst and automatic scoring by our tool and

get two ranked lists respectively. The ranking results are shown

in Table I. Then, we use Spearman’s ρ metrics to evaluate the

ranking performance of our tool. Spearman’s ρ is a common

rank correlation metrics for measuring the similarity of two

ranked lists[8]. The more similar the two ranking lists are, the

closer the value of the Spearman’s ρ is to 1, the better the

ranking performance. We use the SPSS tool[9] to calculate

the Spearman of two ranked lists. The result is that the value

of Spearman’s ρ is 0.891, and a significance level of 0.01. It

shows that there is a significant positive correlation between

these two ranked lists and our tool can effectively assess the

quality of feature requests.
TABLE I

RANKING OF TEN FEATURE REQUESTS BY ANALYSTS AND NERO

Feature Request Id 1 2 3 4 5 6 7 8 9 10
Ranking by Analyst 1 2 3 4 5 6 7 8 9 10
Ranking by NERO 2 1 4 6 3 5 9 7 8 10

IV. RELATED WORK

Heck and Zaidman[1] develop a framework for the quality

assessment of just-in-time (JIT) requirements and instantiate

this framework for feature requests. Scacchi et al.[3]argues

that the requirements artifacts in open source software devel-

opment can be evaluated by (1) encouragement of community

building; (2) freedom of expression; (3) readability; (4) and

implicit versus explicit structures for organizing. Compared to

the existing studies, our work focuses on the expressiveness

problems in feature requests and summarizes three categories

of smells that affect their expressiveness quality. We also

provide automated methods for content annotation, smells

detection, and quality assessment of feature requests.

V. CONCLUSION AND FUTURE WORK

This paper presents a tool that allows users to better under-

stand the content of feature requests and improve the quality

of elicited and elaborated requirements from such feature

requests. Besides, users can make a preliminary judgment on

the quality of feature requests based on the overall score. As

for future work, we will extend the tool to enable automatic

identification of feature requests from user feedback and to

support batch processing of a large number of identified

feature requests instead of the current manual editing input.
ACKNOWLEDGEMENT

This work is supported by the National Science Foun-

dation of China under grant No.61802374, No.61432001,

No.61602450, and the National Key Research and Develop-

ment Program of China under grant No.2018YFB140-3400.

REFERENCES

[1] P. Heck and A. Zaidman, “A framework for quality assessment of
just-in-time requirements: the case of open source feature requests,”
Requirements Engineering, vol. 22, no. 4, pp. 453–473, 2017.

[2] L. Shi, C. Chen, Q. Wang, S. Li, and B. W. Boehm, “Understanding
feature requests by leveraging fuzzy method and linguistic analysis,” in
ASE 2017, pp. 440–450, 2017.

[3] W. Scacchi, “Understanding requirements for open source software,”
pp. 467–494, 2009.

[4] G. Lami, “Quars: A tool for analyzing requirement,” Tech. Rep.
CMU/SEI-2005-TR-014, SEI, CMU, 2005.

[5] S. F. Tjong and D. M. Berry, “The design of SREE - A prototype potential
ambiguity finder for requirements specifications and lessons learned,” in
REFSQ 2013, vol. 7830, pp. 80–95, 2013.

[6] L. A. Zadeh, “Fuzzy sets,” Information and control, vol. 8, no. 3, pp. 338–
353, 1965.

[7] T. L. Saaty, “What is the analytic hierarchy process?,” in Mathematical
models for decision support, pp. 109–121, 1988.

[8] D. K. Agarwal and B.-C. Chen, Evaluation Methods, p. 55–78. 2016.
[9] I. Spss et al., “Ibm spss statistics for windows, version 20.0,” New York:

IBM Corp, vol. 440, 2011.

401

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 10,2023 at 13:45:25 UTC from IEEE Xplore. Restrictions apply.

APPENDIX

The design of the NERO’s user interface follows the prin-

ciple of simplicity. The purpose of this is to allow users to

more intuitively obtain structural information that can help

them to understand and analyze the feature requests. As mock-

analysts, participants are encouraged to use the tool demo to

automatically analyze the input feature request and they will

get a general overview of (1) the content annotation, (2) the

smells detection, and (3) the overall assessment.

Fig. 2. Input of feature request

Participants first need to enter the feature request to be

analyzed in the Input section, which includes two parts: title

and content description (see Figure 2). They can also click on

the Sample FR link in the lower right. After clicking, the tool

will automatically type in the input box a sample, which is

a real feature request from the issue tracking systems. Then,

participants can click the Submit button for analysis to trigger

the content annotation functionality.

Fig. 3. Content Analysis of feature request

Figure 3 shows the content analysis of a sample feature

request entered by participants. Each line presents the annota-

tion result of each sentence in the input feature request, where

the first half represents the semantics of the sentence, and the

second half is the original sentence. The six categories (intent,

explanation, advantages, disadvantages, examples, and trivia)

are defined in Table III.

Fig. 4. Detection of smells in feature request

As shown in Figure 4, each line is a collapsible panel in the

text box of smells detection, and we select a different color

background to show the original sentence. The tool classifies

the sentence into three levels according to the number of smells

in the sentence: zero, low, and high, which correspond to the

three background colors (white, yellow, and red). Three error

levels and their corresponding background colors are defined

in Table IV.

If the background color of a row is displayed as yellow or

red (i.e., there are smells in the sentence of feature requests),

the participants can see all the detected smells by clicking

the sentence link on the panel title (see Figure 5 and 6).

Each line in the content part of the panel represents one

of the ten smells detected in feature request. For smells in

lexical level (e.g. vague, weak, and incomplete), the tool will

display the extracted keywords; for smells in syntactic level

(e.g. coordination ambiguity and referential ambiguity), the

tool will display information about the matched patterns; for

readability quality property, the tool will display the readability

level of the sentence (easy, hard). If there are no smells in the

sentence, the tool will also give the participants a hint (see

Figure 7).

Fig. 5. An example of a sentence with low error level

Figure 5 shows all the detected smells in the third sentence

of the input feature request. There is only one smell in this

sentence, so the corresponding error level is low.

402

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 10,2023 at 13:45:25 UTC from IEEE Xplore. Restrictions apply.

TABLE II
EXPLANATIONS AND DETECTION METHODS OF SMELLS

Smell Category Smell Name Explanation Detection method

Ambiguous

Vagueness
Vagueness occurs whenever a statement admits borderline cases, such as appropriate, clear,

significant, etc.
Keyword glossary, Lemmatization

Weakness
Weakness occurs when the feature requests use words with weak semantic content and little

emotional color, such as could, may, might, etc.
Keyword glossary, Lemmatization

Generality
Generality occurs when the sentence contains words that identify a certain type of object,

and no modifiers limit its scope, such as flow, access, data, interface, etc.

Keyword glossary, Lemmatization,

Dependency parsing

Coordination

ambiguity

Coordination ambiguity occurs when the use of coordinating conjunctions leads to multiple

potential interpretations of a sentence.
POS tagging,Regular expression

Referential

ambiguity

Referential ambiguity occurs when an anaphor (e.g. it, that, which, etc.) can take its

reference from more than one element, each playing the role of the antecedent.
POS tagging,Regular expression

Passive voice Passive voice occurs when the passive voice is used in the feature requests. Dependency parsing,Regular expression

Incomplete

Missing

condition

Missing condition occurs when the sentence contains an if clause expressing the condition,

but there is no corresponding else/otherwise clause.
Keyword glossary,Lemmatization

Missing

description

Missing description occurs when the sentence contains omitted-meaning words, such as as

defined, to be completed, to be determined, etc.
Regular expression

Unintelligible
Unreadability Unreadability occurs when the sentences in one feature request are too long or not smooth. GPT2 LM,Coleman-Liau formula

Partial Content

Partial Content occurs when the feature requests lack any of the five semantic annotations

(except Trivia) mentioned in the content annotation.We assume that feature requests with

more different content annotations will deliver more diverse information.

Weighted analysis

TABLE III
DEFINITIONS OF SENTENCE CATEGORIES

Category Importance Definition

Intent 1
Descriptions about ideas, needs, or expectations to
improve the system and its functionalities.

Benefit 2
Descriptions about good or helpful results or effects
that the proposed feature will deliver.

Drawback 3
Descriptions of disadvantages or the negative parts
of the current system behavior.

Example 4
Descriptions of examples or references in support of
the proposed feature.

Explanation 5
Detailed information about the current behavior, sce-
narios, or solutions related to the proposed feature.

Trivia 6
Other information that are not related to the propose
feature nor the system.

TABLE IV
DEFINITION OF ERROR LEVEL

Error Level The Number of Smells Background Color

zero 0 white

low 0 to 4 yellow

high 4 or more red

Fig. 6. An example of a sentence with high error level

Figure 6 shows all the detected smells in the fourth sentence

of the input feature request. The number of smells in this

sentence is more than four, so the error level is high.

Fig. 7. An example of a sentence with zero error

Figure 7 shows the detection result of the last sentence in

the input feature request. There is no smell in this sentence,

so the corresponding error level is zero error.

Fig. 8. Overall assessment of a feature request

Figure 8 shows the overall assessment of the feature request.

The pop-up window on the right sidebar contains the content

of the overall assessment of the text, including the overall score

and the number of occurrences of various smells. Participants

can use the structured information provided in the overall

assessment to quickly make a rough judgment about the

quality of the input feature request. They can view or hide this

pop-up window by clicking the overall assessment button.

403

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 10,2023 at 13:45:25 UTC from IEEE Xplore. Restrictions apply.

