
Environment-Driven Abstraction Identification for
Requirements-Based Testing

Zedong Peng
University of Cincinnati
Cincinnati, OH, USA

pengzd@mail.uc.edu

Prachi Rathod
University of Cincinnati
Cincinnati, OH, USA

rathodpt@mail.uc.edu

Nan Niu
University of Cincinnati
Cincinnati, OH, USA

nan.niu@uc.edu

Tanmay Bhowmik
Mississippi State University
Mississippi State, MS, USA

tbhowmik@cse.msstate.edu

Hui Liu
Beijing Institute of Technology

Beijing, China

liuhui08@bit.edu.cn

Lin Shi
Institute of Software Chinese Academy of Sciences,
University of Chinese Academy of Sciences, China

shilin@iscas.ac.cn

Zhi Jin
Peking University
Beijing, China

zhijin@pku.edu.cn

Abstract—Abstractions are significant domain terms that have
assisted in requirements elicitation and modeling. To extend the
assistance towards requirements validation, we present in this
paper an automated approach to identifying the abstractions
for supporting requirements-based testing. We select relevant
Wikipedia pages to serve as a domain corpus that is independent
from any specific software system. We further define five novel
patterns based on part-of-speech tagging and dependency pars-
ing, and frame our candidate abstractions in the form of <key,
value> pairs for better testability. We evaluate our approach
with six software systems in two application domains: Electronic
health records and Web conferencing. The results show that our
abstractions are more accurate than those generated by two
of the state-of-the-art techniques. Initial findings also indicate
our abstractions’ capabilities of revealing bugs and matching the
environmental assumptions created manually.
Index Terms—abstractions, natural language, environmental

assumptions, requirements-based testing

I. INTRODUCTION

In requirements engineering (RE), an abstraction refers to
a term that has a particular significance in a given domain [1].

For example, “radar” is recognized as an abstraction in the air

traffic control problem domain [2], and so is “antenna” in the

radio frequency identification (RFID) application domain [3].

In order to reduce the requirements engineer’s effort, re-

searchers have developed methods to automatically identify the

abstractions from the natural language (NL) documents. While

the seminal work of AbstFinder searches for patterns of byte

sequences [4], other researchers have located the abstraction

candidates by exploiting natural language processing (NLP)

techniques (e.g., corpus-based frequency profiling and part-

of-speech tagging) [2], [3], [5]–[7].
Current support is mainly for early phase RE where the

focus is on understanding the problem domain before formu-
lation of the initial requirements [8]. For instance, Sawyer et
al. [2] showed in an air traffic control case study that the

abstractions extracted from a set of ethnographic fieldnotes by

NLP could match the elements of a class diagram at a 75%

recall and 12% precision level. Clearly, the relevance of such

NLP results must be vetted by the requirements engineer.

Indeed, Ryan [9] argued that NLP should play only a

partial role in requirements validation, i.e., demonstrating

convincingly a software system’s conformance to stakeholder

needs, because validating requirements must remain an in-

formal, social process. Ryan [9] further pointed out that an

intrinsic difficulty lies in the identification of assumptions that
reflect the shared (“common sense”) knowledge of people

familiar with the social and technical contexts within which

the software system operates.

Significant to RE are the environmental assumptions [10],
i.e., the conditions over the phenomena of the physical world

that one accepts as true irrespective of the software to be

built [11]. In this paper, we use “assertion” [11] and “assump-

tion” [12] interchangeably to refer to a statement indicating
a property over the phenomena in the software’s operational

context that is accepted as true by the developers [13]. Many

software problems originate in missing or flawed environmen-

tal assumptions.

A recent empirical study by Bhowmik et al. [14] with 114
developers showed the positive impact of environmental as-

sumptions on requirements-based testing. One concrete result

highlighted the assumption: “a doctor’s appointment shall be

scheduled only for a future timeslot”. This statement generally

holds independent of any specific software system. As a

result, it helped to uncover a defect in a software application

where a patient was able to make an appointment for a past

date and time [14]. Despite the positive impact, Bhowmik

et al. [14] reported that manually formulating complete and

correct environmental assumptions from scratch is challenging.

Using NLP to automatically produce assumption statements,

according to Ryan [9], is infeasible; however, narrow domain

understanding in the form of abstractions has been shown to

be realistic [1]–[4]. Our objective in this paper is to auto-

matically identify the abstractions that are both indicative of

important domain phenomena and amenable to requirements-

based testing. To that end, we derive a corpus by selecting

pages from Wikipedia, an exceptional repository codifying

our shared knowledge about specific and connected topics.

245

2021 IEEE 29th International Requirements Engineering Conference (RE)

978-1-6654-2856-9/21/$31.00 ©2021 IEEE
DOI 10.1109/RE51729.2021.00029

20
21

 IE
EE

 2
9t

h
In

te
rn

at
io

na
l R

eq
ui

re
m

en
ts

 E
ng

in
ee

rin
g

C
on

fe
re

nc
e

(R
E)

 |
97

8-
1-

66
54

-2
85

6-
9/

21
/$

31
.0

0
©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

R
E5

17
29

.2
02

1.
00

02
9

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 10,2023 at 13:11:26 UTC from IEEE Xplore. Restrictions apply.

We then define a novel set of NLP patterns to extract and

rank candidate abstractions. We show the effectiveness of our

approach by comparing its results with abstractions identified

from the state-of-the-art methods [1], [4]. We also demonstrate

our approach’s usefulness by relating the resulting abstractions

to the environmental assumptions created manually [12], [14].

The main contribution of our work is the abstraction identifi-

cation that goes beyond early phase RE and offers new support

for requirements validation. Our evaluation with six software

applications in two different domains shows the effectiveness

of our approach. In what follows, we present background

information in Section II. We then clarify the influence of

environmental assumptions on requirements-based testing in

Section III. Section IV details our NLP tool chain, Section V

describes the empirical evaluations, and finally, Section VI

concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Abstraction Identification in Requirements Engineering

Abstractions are important domain concepts which the

human analyst needs to identify in order to understand the

problem domain as well as the constraints on the range of

possible solutions [2]. To support the elicitation of the initial

requirements, Goldin and Berry [4] developed the AbstFinder

tool based on the idea that important abstractions would recur

frequently as repeated words within the target NL document.

AbstFinder thus searches for co-occurring byte sequences

within pairs of sentences using a series of circular shifts, and

returns a ranked list of frequently occurring words and phrases.

To be successful in supporting early phase RE, the auto-

matic identification of abstractions must achieve a level of

completeness at least as good as that achieved by a human

analyst. High recall values are often obtained at the cost of

low levels of precision [15]–[17]. As noted in [4], when a

complex problem is tackled, a precision of 25% or higher

represents good abstraction identification performance.

Sawyer et al.’s air traffic control case study confirmed the
practically achievable precision level, where a NLP toolset

was used to extract abstractions from an aggregated set of

ethnographic fieldnotes comprising about 44,000 words [2].

The technique achieved a 21% precision, showing the practical

performance when processing a sizable volume of text.

Gacitua et al. [1], [3] used corpus-based frequency profiling
to identify single-word abstractions. Given a domain document

D and a normative corpus C, frequency profiling computes a
term t’s log-likelihood value1 LLt according to t’s observed
values in D and its expected values in C. The greater the

LLt value is, the more significant t is in D than in C, and
hence the more likely t is an abstraction. Because over 85%
domain-specific terms are multiword units [18], Gacitua et al.
also recognized multi-word abstractions via syntactic patterns

based on PoS tagging, namely “adjectives and nouns”, and

“adverbs and verbs”. In an experiment with the full text of

a book containing 156,028 words, Gacitua et al.’s method

1Mathematical definition is provided later in equation (6) of Section V-B.

achieved a 32% recall and a 32% precision, outperforming

AbstFinder’s 7% recall and 7% precision [1].

In summary, abstraction identification can be thought of

as where the expertise of domain expert and requirements

engineer meet [3]. Since domain expertise is often available to

the requirements engineer as NL documents (e.g., marketing

reports), abstractions identified from the relevant documents

help encapsulate the rich contextual information needed for

the framing of the requirements. Framing the requirements,

as Jackson [11] pointed out, must consider explicitly the

phenomena of the environment in which the software operates.

B. Environmental Assumptions

An assumption is defined as: “a thing that is accepted as
true or as certain to happen, without proof ”2. In software de-
velopment, an environmental assumption is a statement about
the software system’s operational context that is accepted as

true by the developers [13]. For example, the statement: “a

train is moving if and only if its speed is non-null” [12] is

an assumption made about the physical world. Many soft-

ware problems originate in missing, inadequate, inaccurate,

or changing environmental assumptions [12]. Notably, the

assumption made about the maximum horizontal velocity did

not hold for Ariane 5, contributing to the rocket launch

failure [19].

Diagnosing whether an existing assumption is incorrectly

removed or retained in a software product line is addressed

by Rahimi and her colleagues [20]. This diagnostic approach

considers only the safety-related assumptions that are linked

to the manually conducted Failure Mode, Effects and Criti-

cality Analysis (FMECA) [21]. Rules are then defined to flag

potential assumption errors for a new or changed product.

Although documented assumptions may be flawed, one of

the most critical problems is that assumptions are usually kept

undocumented in software projects [22], leading to architec-

tural mismatches [23], budget and schedule overruns [24],

security vulnerabilities [25], and a multitude of system issues,

defects, and failures. Similar to requirements and source code,

assumptions are a type of software artifacts being produced,

modified, and used by a process [26]. Next we present our

proposal for integrating environmental assumptions in the

requirements-based testing process.

III. ENVIRONMENTAL ASSUMPTIONS AND

REQUIREMENTS-BASED TESTING

Skoković and Skoković [27] introduced requirements-based

testing (RBT) to address two major issues in software quality

assurance: (1) validating the requirements are unambiguous,

consistent, and complete, and (2) designing a necessary and

sufficient set of test cases from a black-box perspective to

cover the validated requirements. Fig. 1 shows the three RBT

activities, which we use iTrust’s3 “Schedule Appointments”

2http://www.oxforddictionaries.com/definition/english/assumption
3iTrust is a Java application that provides patients with a means to keep up

with their medical records and to communicate with their doctors [28].

246

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 10,2023 at 13:11:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. The RBT process flow (adapted from [27]).

requirement [28] to illustrate. Fig. 2 displays a snippet of this

use case.

RBT’s first activity of requirements quality assurance stands

out from other traditional testing techniques. Not only must

the requirements be validated against the business objectives,

but an initial review shall be conducted to try to find errors in

requirements, such as ambiguity, incompleteness, and incon-

sistency [29].

Given the validated requirements, the next RBT activity is to

design such black-box, logical test cases as to achieve high test

coverage of the requirements [27]. Designing and reviewing

logical test cases can help discover requirements problems,

e.g., E1, as currently stated in Fig. 2, is triggered by a new

appointment type’s name over 30 characters, or by a duration

unit not entered in minutes. However, S1 lacks information

about whether the name and the duration are mandatory at a

new appointment type’s creation time. Thus, the requirements

can be clarified for better logical test coverage.

The third RBT activity shown in Fig. 1 concerns executing

tests by adding data to the logical test cases. Once all of

the tests execute successfully against the code, Skoković and

Skoković [27] argue that 100% of the functionality has been

verified and the code is ready to be delivered into production.

Despite RBT’s attentions paid to requirements, we believe

the process of Fig. 1 can be enhanced by two shifts, both

involving environmental assumptions. First and foremost, the

meaning of requirements is defined by Jackson as [11]:

E ,S � R (1)

where E , S, and R represent environmental assumptions,

specifications, and requirements respectively. Fig. 3 depicts the

Use Case: Schedule Appointments
Sub-flows:

[S1] The system shall enable the administrator to add a

new entry for an appointment type, including its

type name with up to 30 alpha characters and

duration in the unit of minutes [E1].

[S2] The LHCP (licensed health care professional)
schedules an appointment with a patient, and enters

comment (optional) up to 1000 characters [E2].

[S3] The patient selects an LHCP from his or her

provider list. The patient selects the type of

appointment, enters the appointment date and start

time. If the requested appointment time does not

conflict with any existing appointment for the LHCP,

the request is saved. If the requested appointment

time does conflict with an existing appointment, the

patient is presented with a list of the three next non

-overlapping available appointment times within 7

days of the requested date. The patient selects one

of these appointments and the request is saved.

Alternative Flows:

[E1] The user inputs invalid information and is prompted
to try again.

[E2] The comment is empty and the text “No Comment”
(without link) is displayed instead of the “Read

Comment” link.

Fig. 2. Snippet of iTrust’s “Schedule Appointments” use case (adapted
from [14]).

conceptual distinction and overlap between the environment

and the machine (software-to-be). A customer requirement R
expresses a condition over the phenomena of the environment

that we wish to make true by installing the machine, whereas

an environmental assumption E expresses a condition over

the phenomena of the environment that we accept to be true

irrespective of the properties and behavior of the machine [11].

The � among E , S, and R is an entailment. Compared with

validating R against business objectives shown in the top

activity of Fig. 1, equation (1) shifts requirements validation

toward the entailment relationship, �, to which E is integral.

In Fig. 3, P and C are private to the machine domain:

P denotes the program implementing the specification, and

C denotes the computing platform on which P runs. The

correctness of a software implementation is given as [30]:

P, C � S (2)

and we further denote the software under test (SUT) by (P, C)
to indicate that software testing, including RBT, is to stimulate

P on C as a whole with concrete input data. From equations

(1) and (2), we have:

E , SUT � R (3)

deducing requirements validation in the absence of S .

247

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 10,2023 at 13:11:26 UTC from IEEE Xplore. Restrictions apply.

Environment

Fig. 3. The environment is the part of the world with which the machine (i.e.,
the software-intensive system) will interact (adapted from [11] and [30]).

The second shift that we propose to the RBT process shown

in Fig. 1 is to highlight the practical value of testing. Dijkstra

famously said, “Testing shows the presence, not the absence
of bugs”4. We argue that searching for those environmental

assumptions and test inputs such that:

E , SUT � R (4)

would be more valuable to RBT than trying to achieve a

100% test coverage against the requirements. Let us revisit

iTrust’s “Schedule Appointment” requirement in Fig. 2. Sub-

flow [S3] describes two branches after the patient enters the

requested appointment time: no time conflict with the LHCP or

otherwise. Two logical test cases can then be designed to have

both branches covered. However, an unstated assumption about

[S3] is that: “If a doctor’s appointment cannot be made at the

patient’s preferred time, the patient will accept an alternative

appointment time within 7 days of the preferred time.”

Making this assumption explicit allows us to construct a

concrete E (e.g., “a patient wants to know the options, and

possibly schedules the appointment, beyond 7 days of the

unfulfilled, preferred time”) such that E , SUT � R, effectively
showing the presence of a bug5 and provoking requirements

changes. From this example, we derive the desiderata of the

kinds of E that best support our revised RBT process:

• E shall be machine-independent. Regardless of iTrust or
any other machine being the SUT, E is in the indicative

mood [11], expressing what is assumed to be true in the

environment.

• E shall be requirements-related. Although E is inde-

pendent of the machine, it should not be indifferent to

R. Even for the same SUT, different requirements, in

principle, need different assumptions to support the RBT.

• E shall be directly-testable. The E that gives rise to

executable tests is preferred. In addition to being closely

related to R, E shall induce as concrete test inputs as

possible to trigger the SUT.

• E shall be bug-revealing. The practical value of showing
the presence of bugs implies that the RBT helps to

uncover flawed assumptions, faulty implementations, or

invalidated requirements.

Automatically generating E with all the desiderata from

NL documents is unrealistic [9], but the less ambitious goal

of assisting the discovery of problem domain properties is

4https://en.wikiquote.org/wiki/Edsger W. Dijkstra
5By “bug”, we mean equation (4) is evaluated to be true (i.e., the entailment

relationship fails to hold) under a specific set of E , SUT, and R.

feasible, as evidenced by abstraction identification in RE (cf.

Section II-A). The next section presents our automated support

for identifying abstractions driven by the desiderata of E .
IV. ABSTRACTION IDENTIFICATION FOR ENVIRONMENTAL

ASSUMPTIONS

Fig. 4 shows an overview of our NLP tool chain for extract-

ing and ranking abstractions. The candidate abstractions are

then used to assist the human analyst in performing the RBT.

Our approach consists of three major steps: corpus selection

from Wikipedia, abstraction identification via NLP patterns,

and abstraction ranking according to the textual similarity

between the extracted abstractions and the NL requirements

of a software-intensive system. This section uses iTrust [28],

a software system helping to manage electronic health records,

to illustrate our approach.

A. Preprocessing

The data source that we use to identify the abstractions

is Wikipedia. The main rationale is to achieve the machine-
independent property of the resulting abstractions. Wikipedia
is a vast online source of human knowledge that describes the

concepts across a wide range of domains. These descriptions

are independent from any specific software solutions, and are

indicative stating what is believed to be true rather than what

is wished to be true by introducing a software solution. Addi-

tionally, Wikipedia is a text corpus that collectively contains

the current conventional wisdom of the subject matters [31].

This ensures the descriptions are less biased than individuals’

subjective opinions (e.g., tweets about a software product).

To select a corpus for our purpose of abstraction identifica-

tion, a seed page is required to anchor the domain interests.

Our approach relies on the human analyst to provide such

a seed page. For iTrust, for example, the Wikipedia page

on “Electronic health records”6 is manually chosen as the

seed page, from which a corpus containing related pages

is derived. We build on Ezzini et al.’s recent work where

they used a domain-specific corpus for detecting requirements

ambiguities [32]. While using a corpus that is too small

would be ineffective in recognizing significant terms and their

relationships, building and using a corpus that is too large

would be time-consuming, and more importantly, would defeat

the goal of being domain-specific [32]. In Ezzini et al.’s work,
50–250 keywords were tested, and in our work here, we

empirically set the corpus’s size to be 250 Wikipedia pages.

To grow from the single seed page to the 250-page corpus,

we distinguish two kinds of Wikipedia pages: content page
introducing a topic and category page listing a set of content
pages belong to a topic as well as the sub-categories of the

topic. Fig. 5 illustrates the distinction: the sub-figure to the left

is a content page whereas the one to the right is a category

page, showing that “Electronic health records” contain two

sub-categories and 45 pages. We further note the hyperlinks

within each content page, e.g., “health care” and “information

6https://en.wikipedia.org/wiki/Electronic health record

248

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 10,2023 at 13:11:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Components of the NLP-aided abstraction identification approach.

systems” of Fig. 5a. These links not only provide an effi-

cient navigation mechanism over the Wikipedia contents, but

also represent some semantic relationships between pages or

categories [33]. Our corpus is constructed with the following

procedure: While the total number of pages is less than 250,

1) Add the manually identified seed page, resulting in the

“Electronic health records” corpus size to be 1 page;

2) Add all the content pages belong to the seed page’s

topic, making the corpus’s size grow to (1+44) = 45

pages;

3) Add all the content pages belonging to the sub-categories

of the seed page’s topic, leading to a (45+30+30) =
105-page corpus; and

4) From the already added content pages, add the

Wikipedia content pages of the hyperlinks before each
page’s structured table of contents (cf. Fig. 5a). The rea-

son that we include into our corpus only the hyperlinked

pages before the table of contents is because these topics

provide substantial background information for the main

topic of interest. We operate 4) based on when a page

is added by following the above 1), 2) and 3) ordering,

till a total of 250 Wikipedia pages is reached.

We implemented our page selection logic by using the

Beautiful Soup Python library [34]. Our Python-based corpus

builder also ensured that no duplicate Wikipedia page was

selected. Once the corpus’s 250 pages were chosen, Fig. 4

shows that data cleansing, tokenizing, and sentence splitting

would take place. For each page, our data cleansing removed

the figures and the formatting information (e.g., table of

contents). Following prior work [35], we then applied spaCy’s

tokenizer [36] to break each page into tokens: words, numbers,

punctuation marks, or symbols. Finally, we used spaCy’s

sentencizer [36] to split the text into sentences based on

conventional delimiters (e.g., period).

B. Extracting Abstractions

We process each sentence from the selected Wikipedia

pages in order to find directly-testable abstraction candidates.
We operationalize “testability” by formatting an abstraction as

a <key, value> pair. This hash structure is intended to separate

a domain concept (key) from its manifestation (value). We

expect the “key” to help locate “what to test”, and the “value”

to guide “how to test it” by feeding in concrete data.

Building on the NLP-based abstraction identification ap-

proaches [2], [3], we define five patterns by exploiting the

syntactic and grammatical roles that words play in a sentence.

Fig. 6 lists these patterns. Note that Gacitua et al. [1], [3]
used two PoS patterns—“adjectives and nouns” and “adverbs

and verbs”—to identify abstractions; however, the two PoS

patterns of our approach, PoS P1 and PoS P2 shown in Fig. 6,

consider <key, value> explicitly.

Dependency parsing [37] is the task of identifying the

grammatical structure of a sentence by determining the lin-

guistic dependencies between the words based on a pre-

defined set of dependency types. For example, in the sentence:
“The system shall refresh the display”, “display” is the direct

(a) Content page (b) Category page

Fig. 5. Sample content page (used in our domain corpus) and sample category page (used to find more content pages to be included in the corpus).

249

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 10,2023 at 13:11:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Illustration of our five patterns for identifying <key, value> abstractions in a sentence. PoS (part-of-speech) tags shown here include: “NN” (noun,
singular), “-LRB-” (left round bracket), “-RRB-” (right round bracket), “NNS” (noun, plural), “JJ” (adjective), “VBP” (verb, non-3rd person singular present),
“VBN” (verb, past participle), “IN” (preposition), “CD” (cardinal number), and “POS” (possessive ending). Dependency parsing types shown here include:
“compound” (noun compound modifier), “nsubj” (nominal subject), and “amod” (adjectival modifier).

object (dobj) of the main verb “refresh” whereas “shall” is

the auxiliary verb (aux) adding modality to the main verb.

Dalpiaz et al. [38] recently exploited dependency parsing to
classify requirements. Although our objective is to identify

abstractions, we believe dependency parsing, just like PoS

tagging, can constitute an effective NLP toolset that offers

deep domain understandings [2]. We detail each of the five

patterns as follows.

• PoS P1 extracts the NN or NNS that precedes the

parentheses as key, and the content inside the parentheses

as value. Cohen et al. [39] showed that the parenthesized
material in biomedical text often contains data value or

list element useful for information extraction, which we

also observe in Wikipedia pages. This pattern therefore

extracts <“adult”, “age 15 +”> from S1 of Fig. 6.
• PoS P2 leverages a common lexico-syntactic way of

providing examples [40] so as to identify the NN or NNS

to be a key, and the hyponym(s) [41] following “such as”

to be its value(s). The pattern thus outputs <“identifiers”,
“name” “addresses” “social security numbers”> as an

abstraction candidate for Fig. 6’s S2.
• DP P1 recognizes the nominal subject (“nsub”) or the
subject’s compound (“compound”) as a key, and the par-

allel NN’s after the main verb “include” (or “includes”)

as values. Different from the “such as” pattern used in

PoS P2, “include” signals a part-whole relationship [42],
listing several concrete facets of the concept. In Fig. 6’s

S3, <“practitioner risk factors”, “fatigue” “depression”
“burnout”> is identified as an abstraction candidate.

• DP P2 treats the nominal subject as a key in the same
manner as DP P1; however, its value is extracted based
on the sequence of “NN, IN, and CD” appearing after the

main verb. DP P2 is informed by Dalpiaz et al.’s find-
ing that “IN and CD” often distinguished requirements

types [38]. For S4 of Fig. 6, DP P2 uncovers <“fever”,
“temperature of 37.8◦”> as a candidate pair.

• DP P3 also considers the nominal subject to be a key,

with the value identified via the NN that follows the

main verb and that is modified by an adjectival (“amod”),

nominal (“nmod”), or numeric (“nummod”) modifier.

Finin [43] noted that modifier takes a head concept and

a potential modifying concept and produces a set of

possible interpretations, which we adopt to derive DP P3.
According to this pattern, <“user’s location”, “personal
information”> is recognized from S5 of Fig. 6.

The above set is by no means an exhaustive list of gram-

matical features that must be associated with environmental-

assumption statements, but a means of automatically extracting

directly-testable abstractions. The NLP patterns are informed

by the relevant literature [38]–[43] and further realized by our

PoS tagging and dependency parsing implementations built on

top of the open-source spaCy library [36] written in Python.

C. Ordering Abstractions

So far, our approach processes information related to a

domain (e.g., Electronic health records). To ensure that our

abstraction identification is requirements-related, we use

the NL requirements of each specific product [44] to rank

the abstraction candidates. In this way, even though some

software-intensive systems are in the same domain, their

ranked abstractions will be different due to the differences

of the requirements at the product level.

Given a product’s requirements R={r1, r2, . . . , rm} (e.g.,
iTrust’s 54 use cases), we first compute the cosine similarity

measure between a candidate abstraction (abst) and R with

TF-IDF weighting [45]–[47]:

cosine(abst, R) =

m∑
i=1

cosine(abst, ri). (5)

250

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 10,2023 at 13:11:26 UTC from IEEE Xplore. Restrictions apply.

TABLE I
DOMAIN AND SUBJECT SYSTEM CHARACTERISTICS

Electronic Web
health records conferencing

of sentences 33,988 43,744
category depths 3 3

(%) of PoS P1 5,437 (16.0%) 4,553 (10.4%)
sentences PoS P2 1,962 (5.8%) 1,182 (2.7%)
to which DP P1 2,133 (6.3%) 785 (1.8%)
a pattern DP P2 3,236 (9.5%) 2,945 (6.7%)
applies DP P3 17,393 (51.2%) 15,973 (36.5%)

of 54 (iTrust) 49 (Teams)
product-level 27 (OpenEMR) 26 (Webex)
requirements 39 (OpenMRS) 31 (Zoom)

Note that R can be a set of selected requirements, or even a set

with one requirement of interest. We then rank all abstraction

candidates by their cosine similarity scores in a descending

order.

V. EVALUATION

This section presents a comprehensive evaluation of our

approach, comparing it with two state-of-the-art abstraction

identification techniques: AbstFinder [4] and relevance-based

abstraction identification (RAI) [1]. Furthermore, we examine

the resulting abstractions’ matching with manually created

environmental assumptions, as well as their capabilities of

revealing software defects. We answer three research questions

(RQs) in this section by assessing the effectiveness (RQ1),

partial-ness (RQ2), and bug-revealing-ness (RQ3) of the pro-

duced abstractions. All our experimental materials are publicly

available at https://doi.org/10.5281/zenodo.4618108 .

A. Domains and Subject Systems

We chose to study two domains, Electronic health records

and Web conferencing, due to our familiarity with them

and the availability of software applications in them.

We ran our Python-based preprocessing steps in Febru-

ary 2021. Table I shows that, when we manually se-

lected https://en.wikipedia.org/wiki/Electronic health record

and https://en.wikipedia.org/wiki/Web conferencing to be the

seed page respectively, a total of 33,988 and 43,744 sentences

were collected. In both domains, the selected 250 Wikipedia

pages were within 3 category depths of each other, implying

these pages’ topical closeness [48]. The five NLP patterns’

applicability ranged from 1.8% to 51.2% of the sentences.

In both domains, DP P3 had a wide influence, showing that
many Wikipedia sentences have described the nominal subject

(“nsub”) with adjectival, nominal, or numeric modifiers.

We selected three software applications for each chosen

domain. Table I lists the number of NL requirements for these

applications. In addition to iTrust, we investigated two open-

source medical record systems: OpenEMR [49] and Open-

MRS [50]. OpenEMR is one of the most popular electronic

medical records in use today with over 7,000 downloads per

month, and its project repository lists 27 features, such as

patient scheduling, prescriptions, and medical billing [51].

Zoom r1: Presenters can share their whole desktop or
individual applications.

Zoom r2: Primary camera view will automatically toggle to
the active speaker.

Zoom r3: Browser, client, and plugin scheduling options,
including delegation for co-hosts and schedulers.

Zoom r4: Record meetings locally and upload to Box,
OneDrive Video, or Youtube.

Zoom r5: Zoom sessions can be expanded to allow larger
groups, up to 500 interactive participants in
Large Rooms or 10,000 viewers via Zoom
Webinars.

Zoom r6: Hide all participants whose cameras are disabled.
Zoom r7: Automatically transcribe the audio of a meeting

or a webinar; the host can then edit the transcript.

Fig. 7. Sample NL requirements of Zoom.

OpenMRS allows for customizable electronic medical record

systems to support the delivery of health care in developing

countries; 39 requirements are introduced in OpenMRS’s user

guide [52], including viewing and creating patient records,

patient dashboard, etc.

Web conferencing has become one of the most prevalent

and useful tools due to the COVID-19 pandemic. We studied

three popular products: Zoom, Cisco Webex, and Microsoft

Teams. While our experimental materials list all the product-

level requirements and the online resources from which we

collected the requirements, Fig. 7 shows a few Zoom features.

B. Effectiveness of Abstraction Identification

As in [1], [4], we measure abstraction identification’s ef-

fectiveness by precision and recall. In addition to our <key,
value> pair (KVP) abstractions, we also experimented with

AbstFinder [4] and RAI [1]. AbstFinder eschews standard text

processing techniques to treat the NL documents as a stream

of bytes, ignoring the lexical elements. For instance, given a

stream of “user needs require an access to”, AbstFinder uses

a sliding window technique that causes the circular shifts of

“by username and password access”, as illustrated below:

As a result, an abstraction candidate, “user access”, would

be recognized. We fed the Wikipedia pages and the product-

level requirements into AbstFinder, and ranked the candidate

abstractions by the frequency of occurrence.

RAI uses corpus-based frequency profiling to compute the

log-likelihood (LL) value for a word w [1]:

LLw = 2 ·
(
wd · ln

wd

Ed
+ wr · ln

wr

Er

)
(6)

where wd is the number of times w appears in the domain

documents of the 250 Wikipedia pages, and wr is the number

251

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 10,2023 at 13:11:26 UTC from IEEE Xplore. Restrictions apply.

of times w appears in the product-level requirements. While

wd and wr are observed values of w, Ed and Er in equation

(6) are expected values: Ed=
nd·(wd+wr)

nd+nr
and Er=

nr·(wd+wr)
nd+nr

,

where nd is the total number of words in the domain docu-

ments, and nr is the total number of words in the product-

level requirements. We ranked the single-word abstraction

candidates in the ascending order of LLw to obtain testable

constructs: the smaller is LLw, the significance of w in domain

documents is closer to that of w in product-level requirements,

making w’s ranking closer to the top. The multiword abstrac-
tion candidates were recognized by the “adjectives and nouns”

and “adverbs and verbs” PoS patterns, and then ranked by an

aggregated LL for the multiword unit [1].

Table II presents a comparison of AbstFinder, RAI, and our

approach. Due to space constraints, we show only the top-

five abstraction candidates of iTrust and OpenEMR from the

healthcare domain. To quantitatively and practically evaluate

different abstraction identification techniques, we measured

precision of the topmost 20, 100, and 200 results. Sawyer et
al. [2] hypothesized that human analysts would be reluctant to
explore a long list of abstraction candidates and used the 20

highest ranked candidates to simulate the hypothesis. Gacitua

et al. [1] evaluated the topmost 200 candidates as a practical
upper bound. Therefore, we also computed recall@200 with-

out exceeding this limit.

The answer set for each subject system was constructed by

two researchers: first individually and then jointly to resolve

discrepancies. Cohen’s kappa before the joint meeting was

0.57, signifying a moderate level of inter-rater agreement.

The main challenge was to handle abstractions with varying

lengths yet overlapping partially, e.g., in iTrust, AbstFinder’s

11th output was “imaging”, RAI’s 153rd output was “med-

ical imaging”, and our 31st pair was <“medical imaging”,
“time”>. The research team decided to unify these candidates

with shortest-common-supersequence [53], i.e., creating one
element of “medical imaging time” in the answer set and

then using ‘contained in’ to establish a match. In this way,

AbstFinder’s 11th, RAI’s 153rd, KVP’s 31st outputs were

considered as matching the answer set’s element of “medical

imaging time” because all three candidates were ‘contained

in’ that element. Note that the ‘contained in’ match was

(a) Electronic health records

(b) Web conferencing

Fig. 8. Accuracy of candidate abstractions.

not ordered, so “time medical” would be a match, too. The

two researchers collaboratively defined the answer set for

each subject system based on their individual judgments and

the shortest-common-supersequence unifying step. A third

researcher reviewed and agreed on the answer sets, which we

share as a part of our experimental materials.

Fig. 8 plots the average precision and recall among the

three systems in each domain. When considering precision, we

note that KVP outperforms RAI and AbstFinder. Such effects

are observed more prominently in the healthcare domain than

web conferencing. One reason may be the relatively homo-

geneous domain concepts in web conferencing; in contrast,

healthcare covers wider domain phenomena (e.g., symptoms,

health conditions, and treatments). Given that a precision

over 25% represents practically achievable good abstraction

identification performance [4], all three methods perform well

at Precision@20 in the healthcare domain; however, KVP also

performs well at Precision@20 in web conferencing and even

at Precision@100 in healthcare.

We offer a couple of qualitative insights into the per-

formance differences. First, KVP is contextually richer than

TABLE II
TOP-FIVE ABSTRACTION RESULTS OF ITRUST AND OPENEMR BY ABSTFINDER [4], RAI [1], AND OUR <KEY, VALUE> PAIR (KVP) APPROACH

rank
iTrust OpenEMR

AbstFinder RAI KVP AbstFinder RAI KVP

1 health
cardiac <“factors”,

health
subsequent <“identifier type”,

causes “vascular damage”> recovery “uniform”>

2 clinical healthcare
<“factors”,

clinical
subsequent <“cell type”,

“pathogens” “dysfunctions”> amendment “cytokines”>

3 patient security
<“factors”,

patient
subsequent <“type”,

“mental protection”> surgical “pharmacologic”>

4
health natural <“safety checks”,

system
subsequent <“procedure”, “patient id”

information causes “potential dose”> complications “name” “sex” “age”>

5 electronic
reversible <“x - rays”,

social
ambulatory care <“term”,

causes “absorbed dose”> pharmacists “patient type”>

252

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 10,2023 at 13:11:26 UTC from IEEE Xplore. Restrictions apply.

TABLE III
COVERAGE OF THE EIGHT GISTS OF THE ENVIRONMENTAL ASSERTIONS

ABOUT ITRUST’S “SCHEDULE APPOINTMENTS” USE CASE [14]

Gist AbstFinder RAI KVP
valid user accounts

√ √ √
valid appointment time

√ √ √
valid appointment type
unique patient account

√ √
valid schedule alternatives
designated LHCP
responding to appointment requests

√
displaying patient message

√ √ √

AbstFinder and RAI. In iTrust, the 6th candidate identified by

AbstFinder is “blood”, a rather general concept. RAI outputs

“blood pressure” as its 45th candidate, scoping down the

domain concern greatly. A relevant KVP generated by our ap-

proach is the 98th candidate: <“blood pressure”, “140”>, fur-
ther depicting a testable and indicative domain phenomenon,

i.e., 140 mm Hg or above implies Stage 2 high blood pressure.

Our second observation is that KVP tends to group relevant

domain phenomena which are spread out otherwise. In Open-

EMR, for instance, <“symptoms”, “shortness breath” “chest
pain”> is ranked 8th. RAI, on the other hand, recognizes

“chest pain” as its 10th candidate and “shortness breath”

as its 352nd candidate. The distance is so large that the

two candidates are unlikely to be related with one another.

AbstFinder is also limited in that “shortness breath” is ranked

682nd but “chest pain” is not identified at all. As shown

in Fig. 8, KVP’s Recall@200 reaches about 60% in both

domains, covering more relevant domain phenomena than RAI

and AbstFinder.

C. Comparison with Manually Formulated Assumptions

To gain further insights into abstractions’ completeness, we

compare them with manually created environmental assump-

tions. Our comparison is two-fold: matching the 150 iTrust

assertions studied by Bhowmik et al. [14], and matching the 8
meeting scheduler assumptions shared by Rahimi et al. [20]. In
both cases, two researchers manually extracted the gists of the

iTrust assertions and the meeting scheduler assumptions, and

then matched the automatically generated abstractions with

those gists in a joint session.

Table III shows the coverage results of iTrust. As the

environmental assertions in [14] are about iTrust’s “Schedule

Appointments” use case (cf. Fig. 2), we used only this use

case’s NL descriptions, instead of the NL requirements of all

54 iTrust’s use cases, to rank the automatically generated ab-

straction candidates. Inspecting the top-200 abstractions iden-

tified by AbstFinder, RAI, and our KVP led to a 37.5%, 50%,

and 62.5% coverage over the eight gists listed in Table III. For

instance, “valid user account” was covered by AbstFinder’s

163rd candidate (“validated patient”), RAI’s 89th candidate

(“valid patient”), and KVP’s 59th candidate (<“user”, “valid
patient”>). Compared to AbstFinder and RAI, KVP had the

highest coverage. Notably, the 142nd KVP, <“respondents”,
“regular patients”>, corresponded to the assertion that the

respondents (e.g., a licensed health care professional) shall

approve or deny the patients’ requests for appointment. Such

an assertion was not covered by any of the top-200 candidates

generated by AbstFinder or RAI.

In a study on environmental assumptions, Rahimi and her

colleagues [20] collected 150 statements from the literature

(textbooks, papers, and websites). From this collection, we

selected all the assumptions of the meeting scheduler domain.

These eight statements, shown in the leftmost column of

Table IV, were taken from van Lamsweerde [12]. The rest

of Table IV provides the top-ranked, relevant KVP identified

by our approach that matched the assumption. Although some

statements are idiosyncratic, such as “Saturdays are excluded

dates for meetings”, no KVP within the top-200 abstractions

was found to be relevant to the gist of not scheduling meetings

on some special date. Overall, the coverage of the eight meet-

ing scheduler assumptions [12] is 58.3% (1424). A noteworthy

finding is that, even for the same assumption, different abstrac-

tions are identified for different software products, enabling

more specialized testing for each system, e.g., checking if a

participant who is excluded from the “access control list” in

the “OneDrive folder” could join a Teams meeting, or “ip

address” should authenticate “host identification” in Zoom.

D. Bug-Revealing Capability of Abstractions

As we discussed in equation (4), revealing bugs shows

the practical value of the abstractions in the RBT process.

Among our six subject systems, we focused on the known

bugs of iTrust, Teams, Webex, and Zoom. Bhowmik et al. [14]
highlighted two defects of iTrust discovered manually in the

RBT process. In our analysis, both bugs could be revealed

with support of the KVP results. We manually judged which

abstractions, if known to the testers, could help detect the

bugs. We found that the 139th pair, <“appointment”, “last
year”>, could help uncover the bug that iTrust allowed an

appointment to be made for a past time, and the 79th pair,

<“time”, “scheduling conflicts”> could help detect the bug

that iTrust allowed a patient to schedule appointments with

multiple doctors for different reasons at the same time.

Our manual web search found 7 bugs for Teams, 5 bugs

for Webex, and 7 bugs for Zoom, all of which are shared

in our experimental materials. Analyzing the top-200 KVPs

manually, we were able to use the abstractions to help reveal

3 Teams’s bugs (43%), 2 Webex’s bugs (40%), and 2 Zoom’s

bugs (29%). For example, Teams’s 162nd pair was <“meeting
organizer”, “repetition occurrence meeting”>, helping to de-
fine a path of RBT as follows:

1) Scheduler organizes a daily meeting series;

2) Scheduler invites a guest to join only on day #3;

3) Guest accesses the meeting series’s text chats on day #4.

If the assumption at step 2) is one-time invitation only, then
step 3) is expected to fail. However, step 3) was successful

in Teams, because Teams assumed the guest invitation was

from day #3 onward. Constructing the above testing path

also needs the deep understanding of inviting a guest to

a “repetition occurrence meeting”. This emphasizes that the

automatically identified abstractions are supporting the human

253

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 10,2023 at 13:11:26 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
TOP-RANKED <KEY, VALUE> PAIR MATCHING MEETING SCHEDULER’S ENVIRONMENTAL ASSUMPTIONS (“--” MEANS NO RELEVANT PAIR WAS

FOUND WITHIN THE TOP-200 ABSTRACTION CANDIDATES TO MATCH THE ASSUMPTION)

Environmental Assumption Teams Webex Zoom

A participant cannot attend multiple meetings 67th: <“offline attacks”, 29th: <“shared password,
59th: <“addition users”,

at the same time. “multiple user accounts”> “another person citation”>
“passwords bookmarks”
“history” “cookies”>

Participants will promptly respond to e-mail 58th: <“e-mail”,
-- --

requests. “Microsoft 365 Business Basic”>
A participant is on the invitee list if & only if

-- --
188th: <“user”,

he or she is invited to that meeting. “required path”>

A meeting is scheduled if & only if its time 5th: <“meetings”, 133rd: <“meeting”,
15th: <“meetings”, “up to

and location are set. “Microsoft Teams”> “time meeting”>
100 devices” “40-minute

time restriction”>
A meeting is scheduled only if it is requested. -- -- --
Saturdays are excluded dates for meetings. -- -- --
Confidentiality rules can prevent non-privileged 181st: <“messenger rooms”, 155th: <“server hosts”, 153rd: <“security”,
participants being aware of constraint. “limit participant of 50”> “private sharing”> “unauthorized person”>

Confidentiality rules can prevent non-privileged 173rd: <“access control list”, 165th: <“person meeting”, 129th: <“ip address”,
participants being aware of meetings. “OneDrive folder”> “private meeting”> “host identification”>

analysts, rather than replacing them, in performing RBT. Nev-

ertheless, our 65th KVP, <“sharing feature”, “video sharing”
“audio sharing” “desktop sharing” “file sharing” “whiteboard

sharing” “text sharing”>, clearly suggests some new testing

paths similar to the above, where step 3) can concentrate on

guest’s access to day #4’s uploaded files or day #4’s shared

whiteboard. In fact, Teams provides separate entry points to

chats, files, and whiteboards. Resolving guest’s chat access

does not resolve the file or whiteboard access. Thus, related
KVPs can improve the efficiency of uncovering related bugs.

E. Threats to Validity

A threat to construct validity is that our answer set’s building

adopted shortest-common-supersequence [53] in order to unify

the abstractions identified by different techniques. This caused

the matching between abstraction candidates and answer set

elements to be judged on a ‘contained in’ basis, which must
be taken into account when interpreting our reported recall

and precision values. Another threat is that our assessment of

the bug-revealing capability of abstractions is only speculative

in this work.

We believe the internal validity is high in that the factors

potentially affecting the abstractions’ accuracy, coverage, and

bug-revealingness measures are under our direct control. This

makes the abstraction identification techniques the cause of

observed differences. One factor worth noting is that we ran

our Python-based preprocessing steps in February 2021 in

order to collect the 250 Wikipedia pages for each domain;

however, the collected pages affected all three techniques.

The comparison results among AbstFinder, RAI, and our KVP

approach therefore remain valid.

Our evaluation results may not generalize to other subject

systems or other domains, a threat to external validity. Study-

ing more software applications within and beyond Electronic

health records and Web conferencing will be valuable. An-

other threat here is our reliance on Wikipedia for abstraction

identification. From a computational linguistic point of view,

Wikipedia provides a balance in size, quality, and structure,

between the highly-structured, but limited in coverage, lin-

guistic databases like WordNet, and the large-scale, but less-

structured, corpora such as the entire Web [31]. Nevertheless,

using other corpora or combining Wikipedia with additional

NLP support like WordNet could be interesting directions to

expand our work.

VI. CONCLUSIONS

Automatically finding abstractions that are of particular

significance in a given domain has attracted much attention in

RE, though the primary focus has been on supporting early-RE

activities such as requirements elicitation and modeling [1]–

[4]. In this paper, we have presented an automated approach

built on five novel NLP patterns to identifying abstractions

in the form of <key, value> pairs. We regard such a form

to be testable, and also select relevant Wikipedia pages as an

indicative corpus. Evaluating our approach with six software

applications in two different domains shows that the <key,
value> pairs are more accurate than the abstraction candidates

generated by contemporary techniques. Initial findings also

indicate our abstractions’ capabilities of revealing bugs and

matching the environmental assumptions created manually.

Our work can be extended towards several avenues. Em-

pirical studies, including theoretical replications [54], [55],

with more software systems and more application domains

are needed to lend strength to the findings reported here.

Moreover, grouping related abstractions can be explored for

uncovering more bugs. Finally, as the RBT advocates re-

quirements coverage [27], opportunities exist to re-rank the

abstractions by considering which requirements would be

tested and which ones would need to be tested.

ACKNOWLEDGMENT

The research is partially supported by the National Natural

Science Foundation of China under Grant No. 61620106007,

61802374, 62002348, and 62072442, the National Key Re-

search and Development Program of China under Grant No.

2018YFB1403400, and Youth Innovation Promotion Associa-

tion CAS.

254

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 10,2023 at 13:11:26 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] R. Gacitua, P. Sawyer, and V. Gervasi, “Relevance-based abstraction
identification: technique and evaluation,” Requirements Engineering,
vol. 16, no. 3, pp. 251–265, September 2011.

[2] P. Sawyer, P. Rayson, and K. Cosh, “Shallow knowledge as an aid
to deep understanding in early phase requirements engineering,” IEEE
Transactions on Software Engineering, vol. 31, no. 11, pp. 969–981,
November 2005.

[3] R. Gacitua, P. Sawyer, and V. Gervasi, “On the effectiveness of ab-
straction identification in requirements engineering,” in Proceedings of
the International Requirements Engineering Conference (RE), Sydney,
Australia, September-October 2010, pp. 5–14.

[4] L. Goldin and D. M. Berry, “AbstFinder, a prototype natural language
text abstraction finder for use in requirements elicitation,” Automated
Software Engineering, vol. 4, no. 4, pp. 375–412, October 1997.

[5] A. Dwarakanath, R. R. Ramnani, and S. Sengupta, “Automatic extraction
of glossary terms from natural language requirements,” in Proceedings
of the International Requirements Engineering Conference (RE), Rio de
Janeiro, Brazil, July 2013, pp. 314–319.

[6] C. Arora, M. Sabetzadeh, L. C. Briand, and F. Zimmer, “Automated
extraction and clustering of requirements glossary terms,” IEEE Trans-
actions on Software Engineering, vol. 43, no. 10, pp. 918–945, October
2017.

[7] T. Gemkow, M. Conzelmann, K. Hartig, and A. Vogelsang, “Automatic
glossary term extraction from large-scale requirements specifications,” in
Proceedings of the International Requirements Engineering Conference
(RE), Banff, Canada, August 2018, pp. 412–417.

[8] E. Yu, “Towards modeling and reasoning support for early-phase require-
ments engineering,” in Proceedings of the International Symposium on
Requirements Engineering (RE), Annapolis, MD, USA, January 1997,
pp. 226–235.

[9] K. Ryan, “The role of natural language in requirements engineering,”
in Proceedings of the International Symposium on Requirements Engi-
neering (RE), San Diego, CA, USA, January 1993, pp. 240–242.

[10] Z. Jin, Environment Modeling-Based Requirements Engineering for
Software Intensive Systems. Morgan Kaufmann, 2018.

[11] M. Jackson, “The meaning of requirements,” Annals of Software Engi-
neering, vol. 3, pp. 5–21, 1997.

[12] A. van Lamsweerde, Requirements Engineering: From System Goals to
UML Models to Software Specifications. Wiley, 2009.

[13] T. T. Tun, R. R. Lutz, B. Nakayama, Y. Yu, D. Mathur, and B. Nuseibeh,
“The role of environmental assumptions in failures of DNA nanosys-
tems,” in Proceedings of the International Workshop on Complex Faults
and Failures in Large Software Systems (COUFLESS), Florence, Italy,
May 2015, pp. 27–33.

[14] T. Bhowmik, S. R. Chekuri, A. Q. Do, W. Wang, and N. Niu, “The role
of environment assertions in requirements-based testing,” in Proceedings
of the International Requirements Engineering Conference (RE), Jeju
Island, South Korea, September 2019, pp. 75–85.

[15] N. Niu and A. Mahmoud, “Enhancing candidate link generation for
requirements tracing: the cluster hypothesis revisited,” in Proceedings of
the International Requirements Engineering Conference (RE), Chicago,
IL, USA, September 2012, pp. 81–90.

[16] W. Wang, A. Gupta, N. Niu, L. D. Xu, J.-R. C. Cheng, and Z. Niu,
“Automatically tracing dependability requirements via term-based rele-
vance feedback,” IEEE Transactions on Industrial Informatics, vol. 14,
no. 1, pp. 342–349, January 2018.

[17] W. Wang, N. Niu, H. Liu, and Z. Niu, “Enhancing automated require-
ments traceability by resolving polysemy,” in Proceedings of the In-
ternational Requirements Engineering Conference (RE), Banff, Canada,
August 2018, pp. 40–51.

[18] J. Wermter and U. Hahn, “Finding new terminology in very large
corpora,” in Proceedings of the International Conference on Knowledge
Capture (K-CAP), Banff, Canada, October 2005, pp. 137–144.

[19] J. C. Knight, “Safety critical systems: challenges and directions,” in Pro-
ceedings of International Conference on Software Engineering (ICSE),
Orlando, Florida, USA, May 2002, pp. 547–550.

[20] M. Rahimi, W. Xiong, J. Cleland-Huang, and R. R. Lutz, “Diagnosing
assumption problems in safety-critical products,” in Proceedings of the
International Conference on Automated Software Engineering (ASE),
Urbana, IL, USA, October-November 2017, pp. 473–484.

[21] M. Alenazi, N. Niu, and J. Savolainen, “A novel approach to tracing
safety requirements and state-based design models,” in Proceedings of
International Conference on Software Engineering (ICSE), Seoul, South
Korea, June-July 2020, pp. 848–860.

[22] C. Yang, P. Liang, and P. Avgeriou, “Assumptions and their management
in software development: a systematic mapping study,” Information &
Software Technology, vol. 94, pp. 82–110, February 2018.

[23] X. Jin, C. Khatwani, N. Niu, M. Wagner, and J. Savolainen, “Pragmatic
software reuse in bioinformatics: how can social network information
help?” in Proceedings of International Conference on Software Reuse
(ICSR), Limassol, Cyprus, June 2016, pp. 247–264.

[24] J. Bhuta and B. Boehm, “A framework for identification and resolution
of interoperability mismatches in COTS-based systems,” in Proceedings
of the International Workshop on Incorporating COTS Software into
Software Systems: Tools and Techniques (IWICSS), Minneapolis, MN,
USA, May 2007.

[25] W. Wang, F. Dumont, N. Niu, and G. Horton, “Detecting software
security vulnerabilities via requirements dependency analysis,” IEEE
Transactions on Software Engineering, 2020. [Online]. Available:
https://doi.org/10.1109/TSE.2020.3030745

[26] P. Kroll and P. Kruchten, The Rational Unified Process Made Easy: A
Practitioner’s Guide to the RUP. Addison-Wesley, 2003.

[27] P. Skoković and M. Rakić-Skoković, “Requirements-based testing pro-
cess in practice,” International Journal of Industrial Engineering and
Management, vol. 1, no. 4, pp. 155–161, 2010.

[28] A. Meneely, B. Smith, and L. Williams, “iTrust electronic health care
system: a case study,” in Software and Systems Traceability, J. Cleland-
Huang, O. Gotel, and A. Zisman, Eds. Springer, 2012.

[29] N. Niu, S. Brinkkemper, X. Franch, J. Partanen, and J. Savolainen,
“Requirements engineering and continuous deployment,” IEEE Software,
vol. 35, no. 2, pp. 86–90, March/April 2018.

[30] C. A. Gunter, E. L. Gunter, M. Jackson, and P. Zave, “A reference model
for requirements and specifications,” IEEE Software, vol. 17, no. 3, pp.
37–43, May/June 2000.

[31] A. Mahmoud and N. Niu, “On the role of semantics in automated
requirements tracing,” Requirements Engineering, vol. 20, no. 3, pp.
281–300, September 2015.

[32] S. Ezzini, S. Abualhaija, C. Arora, M. Sabetzadeh, and L. C. Briand,
“Using domain-specific corpora for improved handling of ambiguity in
requirements,” in Proceedings of International Conference on Software
Engineering (ICSE), Madrid, Spain, May 2021, pp. 1485–1497.

[33] S. Chernov, T. Iofciu, W. Nejdl, and X. Zhou, “Extracting semantics
relationships between wikipedia categories,” in Proceedings of the
Workshop on Semantic Wikis (SemWiki), Budva, Montenegro, June 2006.

[34] Beautiful Soup, “A Python Library for Pulling Data out of HTML
and XML Files,” Last accessed: July 2021. [Online]. Available:
https://www.crummy.com/software/BeautifulSoup/

[35] S. Abualhaija, C. Arora, M. Sabetzadeh, L. C. Briand, and E. Vaz,
“A machine learning-based approach for demarcating requirements in
textual specifications,” in Proceedings of the International Requirements
Engineering Conference (RE), Jeju Island, South Korea, September
2019, pp. 51–62.

[36] spaCy, “Industrial-Strength Natural Language Processing In Python,”
Last accessed: July 2021. [Online]. Available: https://spacy.io/

[37] S. Kübler, R. McDonald, and J. Nivre, Dependency Parsing. Morgan
& Claypool Publishers, 2009.

[38] F. Dalpiaz, D. Dell’Anna, F. B. Aydemir, and S. Çevikol, “Require-
ments classification with interpretable machine learning and dependency
parsing,” in Proceedings of the International Requirements Engineering
Conference (RE), Jeju Island, South Korea, September 2019, pp. 142–
152.

[39] K. B. Cohen, T. Christiansen, and L. E. Hunter, “Parenthetically
speaking: classifying the contents of parentheses for text mining,”
in Proceedings of the Annual Symposium on Biomedical and Health
Informatics (AMIA), Washington, DC, USA, October 2011, pp. 267–
272.

[40] C. Klaussner and D. Zhekova, “Pattern-based ontology construction from
selected Wikipedia pages,” in Proceedings of the International Confer-
ence on Recent Advances in Natural Language Processing (RANLP)
Student Research Workshop, Hissar, Bulgaria, September 2011, pp. 103–
108.

[41] M. A. Hearst, “Automatic acquisition of hyponyms from large text cor-
pora,” in Proceedings of the International Conference on Computational
Linguistics (COLING), Nantes, France, August 1992, pp. 539–545.

255

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 10,2023 at 13:11:26 UTC from IEEE Xplore. Restrictions apply.

[42] C. Klaussner and D. Zhekova, “Lexico-syntactic patterns for automatic
ontology building,” in Proceedings of the International Conference on
Recent Advances in Natural Language Processing (RANLP) Student
Research Workshop, Hissar, Bulgaria, September 2011, pp. 109–114.

[43] T. W. Finin, “The semantic interpretation of nominal compounds,” in
Proceedings of the Annual National Conference on Artificial Intelligence
(AAAI), Stanford, CA, USA, August 1980, pp. 310–312.

[44] H. Liu, M. Shen, J. Zhu, N. Niu, G. Li, and L. Zhang, “Deep learning
based program generation from requirements text: Are we there yet?”
IEEE Transactions on Software Engineering, 2020. [Online]. Available:
https://doi.org/10.1109/TSE.2020.3018481

[45] A. S. Nyamawe, H. Liu, N. Niu, Q. Umer, and Z. Niu, “Automated
recommendation of software refactorings based on feature requests,” in
Proceedings of the International Requirements Engineering Conference
(RE), Jeju Island, South Korea, September 2019, pp. 187–198.

[46] A. S. Nyamawe, H. Liu, Z. Niu, W. Wang, and N. Niu, “Recommending
refactoring solutions based on traceability and code metrics,” IEEE
Access, vol. 6, pp. 49 460–49 475, 2018.

[47] A. S. Nyamawe, H. Liu, N. Niu, Q. Umer, and Z. Niu, “Feature requests-
based recommendation of software refactorings,” Empirical Software
Engineering, vol. 25, no. 5, pp. 4315–4347, September 2020.

[48] N. Niu, J. Savolainen, T. Bhowmik, A. Mahmoud, and S. Reddivari, “A
framework for examining topical locality in object-oriented software,” in
Proceedings of the Annual IEEE Computer Software and Applications
Conference (COMPSAC), Izmir, Turkey, July 2012, pp. 219–224.

[49] OpenEMR, “A Medical Practice Management Software System
Supporting Electronic Medical Records (EMR),” Last accessed: July
2021. [Online]. Available: https://en.wikipedia.org/wiki/OpenEMR

[50] OpenMRS, “A Collaborative Open-Source Project on Medical Record
Systems (MRS),” Last accessed: July 2021. [Online]. Available:
https://en.wikipedia.org/wiki/OpenMRS

[51] OpenEMR Features, “Features of OpenEMR,” Last ac-
cessed: July 2021. [Online]. Available: https://www.open-
emr.org/wiki/index.php/OpenEMR Features

[52] OpenMRS User Guide, “A Complete User Guide for
OpenMRS,” Last accessed: July 2021. [Online]. Available:
https://wiki.openmrs.org/display/docs/User+Guide

[53] D. Maier, “The complexity of some problems on subsequences and
supersequences,” Journal of the ACM, vol. 25, no. 2, pp. 322–336,
September 1978.

[54] N. Niu, A. Koshoffer, L. Newman, C. Khatwani, C. Samarasinghe, and
J. Savolainen, “Advancing repeated research in requirements engineer-
ing: a theoretical replication of viewpoint merging,” in Proceedings of
the International Requirements Engineering Conference (RE), Beijing,
China, September 2016, pp. 186–195.

[55] C. Khatwani, X. Jin, N. Niu, A. Koshoffer, L. Newman, and
J. Savolainen, “Advancing viewpoint merging in requirements engi-
neering: a theoretical replication and explanatory study,” Requirements
Engineering, vol. 22, no. 3, pp. 317–338, September 2017.

256

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 10,2023 at 13:11:26 UTC from IEEE Xplore. Restrictions apply.

