
1

Bringing Open Source Communication and
Development Together: A Cross-Platform Study

on Gitter and GitHub
Hanzhi Jiang*, Lin Shi*, Meiru Che, Yuxia Zhang, Qing Wang

Abstract—Recently, a growing body of research has realized that live chat via modern communication platforms plays an increasingly
important role in OSS (Open Source Software) collaborative development. Among these platforms, Gitter has emerged as a popular
choice since it is directed toward GitHub projects by account sharing and activity subscribing. But little is known about how Gitter affects
the OSS development on GitHub. Who are the developers being active in both social and technical platforms? How important are they? In
this paper, we perform a comprehensive cross-platform study on Gitter and GitHub, two representative platforms for live communication
and distributed development, to explore the characteristics of cross-platform contributors (CPCs) and whether live chat can provoke open
source development. This study yields interesting findings: 1) Despite CPCs being small in quantity yet account for a much bigger amount
of communication and development; 2) Gitter continually attracts new contributors; 3) Communication on Gitter has a positive impact on
the contributions of OSS developers; and 4) Inactive developers on GitHub still participate in discussions on Gitter. Based on our findings,
we provide recommendations for OSS communities and developers and shed light on future research directions. We believe that the
findings and insights will inspire the OSS communities, enable a broader view of the interplay between Gitter and GitHub, and enhance
the sustainability of the OSS ecosystem.

Index Terms—Live chat, Team communication, Open source, Empirical study

✦

1 INTRODUCTION

O PEN source software (OSS) contributors maintain a di-
versity of contributing activities on multiple platforms.

For example, they not only commit source code via version
control systems, such as GitHub, but also exert significant
efforts in communication via various platforms, discussing
bugs and solutions, new features, progress management, and
so on [1], [2], [3], [4]. More than ever, live communication
platforms, such as Gitter, Discord, Slack, and X (formerly
Twitter) play a fundamental role in OSS communications
and collaboration. As one type of synchronous textual
communication among a community of developers, live
chat allows developers to receive real-time responses from
others, replacing traditional asynchronous communication
like emails in some cases [1], [5], [6], [7], [8], [9], [10].
Among the aforementioned live communication platforms,

• H. Jiang is with the State Key Laboratory of Intelligent Game, Institute of
Software Chinese Academy of Sciences, Beijing, China, and also with the
University of Chinese Academy of Sciences, Beijing, China.
E-mail: hanzhi2021@iscas.ac.cn

• L. Shi is with Beihang University, Beijing, China.
E-mail: shilin@buaa.edu.cn

• M. Che is with the Data61, CSIRO Australia, Eveleigh, Australia.
E-mail: Meiru.Che@data61.csiro.au

• Y. Zhang is with the Beijing Institute of Technology, Beijing, China.
E-mail: yuxiazh@bit.edu.cn

• Q. Wang is with the State Key Laboratory of Intelligent Game, Institute
of Software Chinese Academy of Sciences, Beijing, China, and with the
University of Chinese Academy of Sciences, Beijing, China, and also with
the State Key Laboratory of Computer Science, Institute of Software Chinese
Academy of Sciences, Beijing, China.
E-mail: wq@iscas.ac.cn

*Both authors contributed equally to this research.
Corresponding author: Qing Wang

Gitter is widely used by OSS contributors in terms of its
openness, provided services and how it organizes chatrooms.
Gitter’s chatrooms are project-oriented and are open for
everyone to participate easily, regardless of the level of
professionality, e.g., beginners are capable of seeking help
from project developers to improve their project knowledge
and programming skills. OSS practitioners can sign in Gitter
simply using their GitHub accounts directly and refer to
GitHub issues/pull requests in the utterance easily through
the auto-link function.

In the literature of OSS, most studies analyze the OSS
community by observing the activities of contributors from
a single-platform perspective. For example, existing studies
take GitHub, the most representative hosting platform for
open-source projects, as the individual research subject to
learn the activities [11], [12], [13], [14] and contributions
[15], [16], [17], [18] of the OSS developers. While, the OSS
community is not only reflected by GitHub, besides which
developers’ communication is also a vital part of the OSS
community. Discussions about technical problems, domain
knowledge, and project coordination are also important
contributions to the OSS community. Only considering the
single-platform analysis might overlook the communication
aspect of the OSS community, leading to an insufficient
understanding and measurement of developers’ contribu-
tions. Moreover, there are OSS developers (cross-platform
contributors, CPCs) who share knowledge and solutions to
problems on communication platforms, as well as write code
and report bugs on GitHub. It remains unclear what role they
play in the OSS community. Understanding these questions
would provide a broader view of how platforms can serve
the sustainable evolution of OSS ecosystems.

2

To bridge the gap, in this paper, we perform an in-depth
cross-platform analysis on Gitter and GitHub. Seven popular
open source communities that both use Gitter and GitHub
platforms are selected as our studied subjects, which leads
to 1,546,127 utterances from 37,060 chatting developers on
Gitter, and 395,664 development activities contributed by
89,858 contributors on GitHub. By cross-linking accounts
between the two platforms of a specific project, a list of 4,506
contributors who collaborate on GitHub and chat on Gitter,
referred as cross-platform contributors (CPCs), is collected.
This cross-platform dataset is publicly available to aid further
research.1

To address our research concerns, we investigate traits
of CPCs in terms of roles and contribution, communication
preference, and behavioral consistency, as well as the pro-
motive effect brought by live chat on OSS contribution by
new contributors, onboarded contributors and returned code
contributors. A variety of analysis techniques are applied: (1)
onion model [19] to characterize roles and communication
preferences of CPCs; (2) social network analysis to measure
the social influence of CPCs; (3) correlation analysis to assess
the behavioral consistency; (4) open card sort to explore
the impact of live chat on attracting new contributors; (5)
inactivity identification [20] and statistic analysis to validate
the impact of live chat on return/contribution.

Among these results, we find that:

• Although the number of CPCs is small, which takes
12.2% on Gitter and only 5% on GitHub, their contri-
bution is significant. The core developers in CPCs only
account for 0.04% GitHub population but contribute to
19% commits.

• CPCs’ communication: core developers are more likely
to discuss advanced topics with a high difficulty level,
while peripheral OSS developers have more social
chatting on unwanted behaviors and errors.

• Though Some contributors have a low social influence
level on GitHub, they can be highly influential on Gitter.

• Gitter continually attracts new contributors. Nearly
60% are OSS product users and 38% are developers
in new contributors, and core developers are one of the
motivating factors.

• OSS contributors who have communicated on Gitter sig-
nificantly contribute more to the open source software,
than those who do not communicate on Gitter.

• Inactive code developers on GitHub still participate in
discussions on Gitter, providing a higher probability of
returning to active code developers.

The remainder of this article is structured as follows.
Section 2 introduces the two studied platforms and the reason
for choosing them. Section 3 presents the description of
our overall study design, research questions, and dataset.
Sections 4-7 introduce our empirical approaches and the
results of the four research questions, respectively. Section
8 discusses the implications and suggestions for individual
developers, OSS communities, and OSS researchers. This is
followed by the threats to validity in Section 9 and related
work in Section 10. Then Section 11 concludes the article and
sheds light on future work.

1. https://github.com/CrossPlatform2023/CrossPlatform2023

2 THE STUDIED PLATFORMS

2.1 OSS Development Platforms

OSS developers often rely on distributed version control
systems such as GitHub, GitLab, and Sourceforge, to col-
laboratively contribute to OSS communities. Among them,
GitHub is a dominant open-source hosting platform based
on Git. The widespreadness of Git, and the flexible collabo-
rative processes, facilitate contributing to, starting up, and
migrating to team projects in GitHub [12]. GitHub follows
a fork-and-pull model [17] where developers can fork the
repository to make modifications in a new branch and create
a pull request to ask for a merge into the original project
if they want to contribute. Then further discussion and
code review take place on the GitHub platform in order to
assure the correctness and feasibility of code changes in their
commits, after which the pull request will be either rejected
or closed. Participants are also supported to report bugs and
new features by submitting issue reports on GitHub.

Although GitHub serves professionally as a project
management and development coordination system, it is
limited in respect of making social connections for developers
[21]. Despite commenting on issues and pull requests, some
developers deem GitHub lacks ways to interact with others
when it comes to detailed discussions such as seeking help
for encountered developmental problems and knowledge
sharing. This motivates us to draw a bigger picture of OSS
project communities by investigating not only collaboration
activities on GitHub but also the communication of develop-
ers off the GitHub platform, as well as the interplay between
them.

2.2 OSS Communication Platforms

To fulfill the communication needs of massive OSS prac-
titioners, communication platforms such as mailing lists,
Gitter, Slack, Discord, X (formerly Twitter), and Microsoft
Teams have emerged to facilitate knowledge-sharing and
help-seeking. These communication platforms can be divided
into two categories: asynchronous communication platforms
and synchronous communication platforms. Asynchronous
communication platforms include email-based mailing lists,
question-answer-based services (e.g. Stack Overflow), social
media-based channels (e.g. X), issue-based platforms (GitHub
discussions), and so on. These platforms are successful in
performing their determined functions, but they lack real-
time response and close interaction with other developers.

Prior studies have manifested the trend of shifting from
traditional asynchronous communication such as mailing
lists towards instant communication chatrooms such as Gitter,
Slack, Discord, and IRC [1], [4], [5], [6], [7], [8], [9], [10], [22],
[23], [24]. These platforms facilitate instant communication
of developers, helping developers who are distributed across
multiple locations to coordinate their contribution within a
community, hence enabling better team collaboration, group
awareness, project coordination, and new technology shar-
ing [8], [25]. Also, users can raise problems they encounter
such as API usage and unwanted behaviors [2], acquiring
closer access to development team members or experts to
answer their questions. In a large-scale survey conducted by
Mezouar et al. [26], the quality of the help received within a
short response time is a major purpose of using Slack and

3

Remove bot account
and merge alias

Chat logs from
Shi et al [2] ’s dataset

Activity records
from GitHub

Collect accounts of
chatroom participants

1,546,127
Utterances

395,664
Activity records

4,506
cross-platform
contributors

RQs Property

Characteristics
of CPCs

RQ1 Role and Contribution

RQ2 Communication Preference

RQ3 Behavioral Consistency

Data Collection

RQs Property

Impact of Live
Chat on OSS RQ4

New Contributors

Onboarded Contributors

Returned Code Contributors

Empirical Analysis

Gitter

GitHub

Select seven
studied communities

Onion Model

SNA

Correlation
Analysis

Inactivity
Identification
Markov Chain

Open Card
Sort
Hypothesis
Analysis

Fig. 1: Overview of our research methodology

Gitter chatrooms. Moreover, they reported the perceived
impacts of using these platforms include supporting the
issue resolution process, providing access to information,
and brainstorming features. Therefore, these communication
platforms play a vital role in the sound development of OSS,
bridging the gap between multiple software tools such as
code hosting platforms and communication channels, and
shaping software development activities and practices [24].

However, despite the benefits investigated by prior
research, we aim to revisit OSS communication along with
development platforms for the following two reasons: (1) the
emergence of OSS communication platforms brings cross-
platform contributors, but little is known about this special
group of OSS practitioners; (2) the quantitative impact of
contributors’ communication on software development still
needs more in-depth exploration.

Here we introduce the three most representative instant
communication platforms: Gitter, Slack, and Discord, re-
spectively, and explain the reason for choosing Gitter as our
subject communication platform. Gitter is a representative
and prevalent instant communication platform with over
800K users, 90K communities, and 300K chatrooms. Gitter
provides live chat services including code tagging, user
tagging, and integrations with code hosting platforms such
as GitHub, therefore, many GitHub projects are eager to
display their Gitter badges as an indication of communication
support [27]. Slack also supports developers’ live chat with
an intent to reduce reliance on email for internal discussions.
Compared to Slack, Gitter provides more openness to those
who are eager to participate in OSS communication, enabling
a lower threshold to find, join, and use thus a larger popu-
lation of participants [26]. Discord is also a popular choice
when it comes to the adoption as an instant messaging tool
for GitHub projects [28], [29], [30]. It enables communication
through various approaches, including voice calls, video
calls, text messaging, and media and files. Compared with
Discord’s general use in multiple situations, e.g., games,
cooking, and study group, Gitter is designed for open-source
developers to chat. With the equipped GitHub-supporting
services like account sharing and automatic issue linking in
utterances, developers can easily sign in to Gitter chatrooms
with their GitHub accounts and quote GitHub issues in
their utterances. This helps to build a strong community of
developers compared to other discussion forums.

Since our research concerns are highly relevant to the
impact of live chat on the OSS project, and that Gitters’

openness and tight integration with GitHub enable a wider
range of contributors to investigate and save our effort in
mapping accounts, we choose Gitter as the representative
communication platform to conduct the cross-platform study.

3 STUDY DESIGN

Overall, the research methodology consists of two phases, as
illustrated in Figure 1. First, in the data collection phase, a
large scale of chat utterances from seven OSS communities
are collected from the Gitter dataset built in our previous
work [2]. By collecting the associated development data
via the shared GitHub accounts, we extend this Gitter
dataset into a cross-platform dataset. Second, in the empirical
analysis phase, we first investigate the characteristics of
CPCs with respect to their role and contribution, commu-
nication preference, and behavioral consistency, and then
we investigate the impact of instant communication on
OSS contribution in terms of new contributors, onboarded
contributors as well as returned code contributors.

3.1 Research Questions

Focusing on the relationship between Gitter and GitHub, we
mainly investigate the characteristics of CPCs and the impact
of live chat on OSS development. Specifically, this study aims
to investigate the following four research questions:

• RQ1 (CPCs’ Role and Contribution): Who are the
developers being active in both Gitter and GitHub, and
how important are they? This research question aims
to unveil the roles of developers being active in both
Gitter and GitHub and examine their importance to the
OSS community.

• RQ2 (CPCs’ Communication Preference): What topics
do CPCs in different roles prefer on Gitter? This research
question dives into CPCs’ discussion contents to explore
the relationship between OSS development roles and
communication topics.

• RQ3 (CPCs’ Behavioral Consistency): Do CPCs behave
consistently across Gitter and GitHub? This research ques-
tion is designed to examine the behavioral consistency
of CPCs across different platforms, with respect to their
activeness, influence, and collaboration.

• RQ4 (Gitter’s Impact on OSS Contribution): How does
Gitter affect OSS contribution on GitHub? This research
question targets to identify how Gitter affects the OSS
contribution on GitHub, in terms of new contributors,

4

TABLE 1: The statistics of our dataset

Community Domain GitHub Repository Gitter population GitHub population CPC
Participants Utterances Participants Activity Records

Angular Frontend Framework angular/angular 10,389 763,173 23,682 70,660 1,930
Appium Mobile appium/appium 1,955 31,656 6,085 25,151 280
DL4J Data Science deeplearning4j/deeplearning4j 3,609 266,577 2,127 29,215 756
Docker DevOps moby/moby 2,138 30,159 13,979 83,104 104
Ethereum Blockchain ethereum/go-ethereum 10,349 94,852 6,957 27,753 240
Nodejs Web Application Framework nodejs/node 3,803 90,336 21,708 78,616 962
Typescript Programming Language microsoft/TypeScript 4,817 269,374 15,320 81,165 234

Total 37,060 1,546,127 89,858 395,664 4,506

onboarded contributors,2 and returned code contribu-
tors.

3.2 Dataset

We build our cross-platform dataset based on our previ-
ous work [2]. In this work, we collected chat utterances
of eight most-participated Gitter communities from eight
active domains, covering front-end framework, mobile, data
science, DevOps, blockchain platform, collaboration, web
app, and programming language. Each chat log contains a
sequential set of utterances (which is referred to as dialog)
in chronological order. The poster and the posting time of
each utterance are also recorded. Dialogs are disentangled in
both manual and automatic ways, including 749 manually
disentangled dialogs and 173,278 automatically disentangled
dialogs using the FF approach [31] after assessing 4 state-of-
the-art dialog disentanglement tools on the manually labeled
data.

We select seven out of eight OSS communities from
this prior dataset by excluding the one that does not host
source code on GitHub. The selected communities include
Angular,3 Appium,4 DL4J,5 Docker,6 Ethereum,7 Nodejs,8

and Typescript.9 The corresponding domains and GitHub
repositories are shown in Table 1.

For Gitter data, we extend the Gitter utterances provided
in the previous dataset to “2022-09-25” using Gitter REST
API [32] as well as the data processing mechanisms provided
by them. Then, we collect accounts of utterance posters in
the chatroom.

For GitHub data, we leverage GitHub REST API [33]
to obtain activity records including commits, issue reports,
and pull requests. Each one of them contains the following
information: activity conductor, time, activity description,
and the id-number. Commenters’ information (commenting
time, username) is recorded in issues and pull requests as
well. Additionally, pull requests also contain their reviewers
and related commits. The GitHub data starts from the
repository initialization and is as of “2022-09-25” as well.
When processing the data from GitHub, we first remove

2. Onboarded contributors are those who have already onboarded on
GitHub and made contributions. This will be discussed in detail in a
latter section.

3. https://angular.io/
4. http://appium.io/
5. https://deeplearning4j.org/
6. https://www.docker.com/
7. https://ethereum.org/en/
8. https://nodejs.org/en/
9. https://www.typescriptlang.org/

automatic bot accounts using GitHub API10 and the classifi-
cation model proposed by Golzadeh et al. [34] that achieves
an F1-score of 0.98. The reason for bot removal is that
bots are reported to perform massive maintenance tasks
on GitHub [35], which might hinder our understanding of
real human developers’ activities. We detect 42 bot accounts,
and they are excluded from this study. Then we resolve
aliases using the automatic classification method proposed
by Vasilescu et al. [36]. The reason for alias resolution is that
developers may use different emails and usernames when
making contributions, which causes contributions by the
same individual to be linked to several accounts [37], [12]. 7
aliases are found and these accounts will be regarded as one.

In total, we build a cross-platform dataset of 37,060
Gitter chatters from 1,546,127 utterances and 89,858 GitHub
developers from 395,664 activity records. Detailed statistics
are shown in Table 1.

With the collected Gitter and GitHub data, we are able
to extract 4,506 cross-platform contributors by mapping the
usernames (a distinct and unique indicator of a user account)
of GitHub contributors and Gitter chatroom participants of
a specific community. Note that the mapping procedure is
community-oriented, which means a CPC is a contributor
on the GitHub repository as well as a chatter on the same
chatroom of this community.

4 RQ1: CPCS’ ROLE AND CONTRIBUTION

4.1 Methodology

First, we identify four types of development activity on
GitHub as OSS contributions according to GitHub Docs [38]
as follows:

• Commit: submit commits to the code repository.
• Report Issue: submit issue reports to track ideas, feed-

back, tasks, or bugs for improvement.
• Review Code: review to decide whether or not to

approve the changes, or request further changes before
the pull request is merged.

• Comment: post comments under the issue reports or
pull requests.

Second, to identify the OSS roles of CPCs and their
importance to the OSS communities, we build an OSS role
taxonomy based on the Onion Model [19] and Core-Periphery
Model [43], which is widely used in the OSS literature [16],
[44], [45]. The role taxonomy includes seven roles: core

10. When collecting data by sending requests, the response of API
calls contains a field indicating user type, and if this field is “Bot”, we
consider this is a bot account.

5

TABLE 2: Classification of OSS roles

Priority Role How to determine

1 Core developers
Core developers are identified based on a Commit-based Heuristic following previous
studies [20], [39], where core developers in a small number are deemed to account for 80% of
the total commits of the project [40], [41], [42].

2 Peripheral developers Similar to the identification of core developers, peripheral developers account for the rest
20% of total commits.

3 Issue reporters Issue reporters are those who report issues.
4 Reviewers Reviewers are those who review code.
5 Commenters Commenters are those who send comments to issues and pull requests.

6 Readers
Repository forkers and dependent developers whose personal project is dependent on
selected repositories are considered to be readers for they might read repository source code
instead of simply using it.

7 Passive users Passive Users just use the software as most of us use commercial software, and they are
attracted to the OSS community due to its high quality and the potential of changes [19].

Core
developers

Fig. 2: Role-based OSS community structure

developers, peripheral developers, issue reporters, reviewers,
readers, commenters, and passive users. Figure 2 shows
the role-based OSS community structure. The onion-like
structure reveals the different layers or levels of participation
and engagement within the community. The inner layer a role
is in, the more effort and contribution this role has devoted
to the community. It also reflects the intersectionality-wise
relationship between roles, e.g., core developers in the center
have an overlapping relationship with other roles, indicating
core developers could report issues, review codes, and make
comments. Table 2 describes roles’ priority and determined
rules. Note that, similar to the Onion Model, the role of
core developers has the highest priority, and the role of
passive users has the lowest priority. When a developer
satisfies multiple roles, we only assign the role with the
highest priority to the developer. This classification process
is automatically accomplished according to each developer’s
activity record.

Third, we measure the social influence of CPCs in
Gitter and GitHub networks respectively via Social Network
Analysis (SNA) [46]. Social networks are utilized to model
the process of information obtaining and spreading [47],
and the propagation of information is often affected by
the influence of certain nodes [48]. Therefore, we aim to
unveil the social influence of CPCs to better understand their

ability to disseminate knowledge in the network. We build
social networks for Gitter and GitHub respectively for each
community. The network of Gitter and GitHub share the
same concept:

G = {V,E}
V = {d1, d2, ..., dn}
E = {< di, dj >}

(1)

where network G consists of a node set V and an edge set E.
Node di represents each developer, and the edge < di, dj >
denotes there is a certain relationship between node di and
dj .

When constructing the Gitter network, we define the
relationship as “reply-to” in one dialog, following previous
studies [2], [49]. The more times a developer communicates
with different developers, the more nodes they will be con-
nected to. When constructing the GitHub network, we define
the relationship as “collaboration” in certain development
activities, i.e., one developer reviews another developer’s
code or commenting interaction on the same issue/pull re-
quest. The more times a developer collaborates with different
developers, the more nodes they will be connected to. Both
Gitter and GitHub networks are unweighted undirected
networks.

Furthermore, to investigate CPCs’ importance in coordi-
nating communication and development, we visualize their
influence levels based on the constructed Gitter and GitHub
social networks by using Gephi [50]. Their influence levels
are measured by the Semi-Local Centrality (SLC) [51], which
is an efficient and prevalent approach to identify nodes
that have a significant impact on network architecture and
functionality, as shown in Equation 2:

Q(dj) =
∑

dw∈Γ(dj)

N(dw)

SLC(di) =
∑

dw∈Γ(di)

Q(dw)
(2)

where N(dw) is the number of neighbors that can be reached
within two steps from node dw and Γ(dj) is the set of node
dj ’s neighbors. Then SLC value of node di can be calculated
as the sum of the Q values of its neighbors.

6

Gitter
GitHub

Cross-platform
contributors

Core developers (0.8%)
Reviewers (3.5%)

Issue reporters (61.7%)
Commenters (24.3%)
Peripheral developers (9.7%)

Role distribution of CPCs

12.2% of Gitter
population

5.0% of GitHub
population

Gitter Utterance

CPCs
non-CPCS

GitHub Contribution

Commits Issues

Reviews Comments

Contribution of CPCs

61%

21% 14%

18% 18%
19%Core: 0.04% of

GitHub population
Commits

Fig. 3: Role analysis and contribution distribution of cross-platform contributors

CPDs
non-CPDs

Appium: GitHubAppium: GitterDL4J: Gitter DL4J: GitHub

(a) CPCs playing focal points in both communities
(DL4J, Angular, Typescript)

CPCs
non-CPCs

Appium: GitHubAppium: GitterDL4J: Gitter DL4J: GitHub

(b) CPCs playing focal points only in Gitter, but not in GitHub community
(Appium, Docker, Nodejs, Ethereum)

Fig. 4: Social network visualization of the Gitter and GitHub community of two examples. Node size indicates its SLC value.

4.2 Result and Analysis
Role and Contribution. Figure 3 shows the roles of CPCs and
their contribution to OSS communication and development.
(1) The left pie chart describes the distribution of CPCs’
five roles. We can see that 61.7% CPCs are issue reporters,
followed by commenters (24.3%), peripheral developers
(9.7%), code reviewers (3.5%), and core developers (0.8%).
86% of them are issue reporters and commenters. The issue
tracking function and pull requests on GitHub provide
collaborators to record and follow the progress of every
issue/pull request until it is resolved, which largely facilitates
OSS management. However, GitHub might lack the live
discussion of issues or pull requests [21]. In spite of the
posting comments for issue/pull requests on GitHub or other
forums, such discussion is in an asynchronous way, which
lacks timely response and reduces efficiency. Therefore, issue
reporters and commenters might prefer to participate more in
Gitter live chat for instant issue/pull request communication.
(2) The donut charts on the right in Figure 3 exhibit CPCs’
contributions. We can see that, despite CPCs only accounting
for 12.2% of the Gitter population, 61% of chat utterances
are posted by them. The same phenomenon is observed
in the GitHub platform. CPCs take up 5% of the GitHub
population, but contribute to 21% commits, 14% issues, 18%
reviews, and 18% comments. Even more exaggerated, the
core developers in CPCs only account for 0.04% GitHub
population, but contribute to 19% commits, as highlighted
on the bottom left in Figure 3. This phenomenon complies
with the Onion Model for healthy OSS communities in that,
core developers are a small number of developers who make
significant contributions to the open source systems [40],

[41], [42]. These core developers with advanced knowledge
and experienced skills have been communicating on Gitter
and bringing their knowledge and skills by answering other
developers’ questions, which is a great benefit for Gitter
participants who are seeking technical help.

Finding 1: CPCs only take up a small portion of developers
on Gitter (12.2%) and GitHub (5.0%), but they contribute
to more than 3/5 utterances on Gitter, and nearly 1/5
contributions on GitHub. Even more exaggerated, the
core developers in CPCs only account for 0.04% GitHub
population, but contribute to 19% commits.

Social Influence. Furthermore, to show their impor-
tance in coordinating communication and development,
we visualize CPCs’ SLC scores based on the Gitter and
GitHub social networks. Each node denotes one developer,
where CPCs are colored red, and other developers are
colored yellow. The size of each node is associated with
the SLC value of the developer, i.e., the bigger the node
size is, the higher value of SLC it stands for. Based on the
observation of the seven networks, we find that, in the social
networks of Deeplearning4j, Angular, and Typescript, CPCs
are focal points on both the Gitter network and the GitHub
network. While in the social networks of Appium, Docker,
Nodejs, and Ethereum, CPCs are focal points on the Gitter
network but are non-focal points on the GitHub network.
Figure 4 shows two examples for each of the two types.
Among all the seven OSS communities, CPCs always play
focal points on the Gitter platforms. In most cases (4/7),
they are focal points only on the Gitter network, while in

7

some cases (3/7), they are focal points on both Gitter and
GitHub. As introduced before, focal points in the network
stand for larger SLC values and are more influential nodes
compared to the rest, which means they tend to have a more
significant impact on information dissemination and network
architecture [51]. Therefore, the network visualization results
indicate that CPCs are key to information spreading due
to their outstanding performance in communicating with a
great number of different developers. They might get used
to communicating with other developers on Gitter every
day, even though they are under heavy responsibility for
contribution.

Finding 2: Among all the seven OSS communities, CPCs
always coordinate OSS communications by playing as focal
points on the Gitter platforms.

5 RQ2: CPCS’ COMMUNICATION PREFERENCE

5.1 Methodology
To explore what topics CPCs in different roles prefer, we
adopt the topic taxonomy proposed in our prior work [2]
which is extended based on Beyer et al.’s category of question
categories on Stack Overflow [52], as shown in Table 3.

TABLE 3: Dialog topic taxonomy

Category Subcategory Topic

Domain-related

Solution-
oriented

API Usage
Review

Problem-
oriented

Unwanted Behavior
Do Not Work
Reliability Issue
Performance Issue
Test/Build Failure
Error
API Change

Knowledge-
oriented

Background Information
New Features
Design
Learning

Non Domain-related Social Chatting
General Development

We randomly retrieve 150 CPC-participated dialogs from
each community, leading to 1,050 dialogs with 1,493 CPC
participants in total, then analyze the OSS roles and their
participated topics orthogonally.

5.2 Results and Analysis
Topic. Table 4 illustrates the dialog topic distribution for
different roles of CPCs. The colors are painted vertically to
reflect the preference of different roles. The darker, the more
times this role has participated in discussing this topic. We
can see that: core developers prefer to participate in dialogs
discussing ”Design”, which is an advanced topic in the
high difficulty level [1]. This corresponds with the experi-
enced programming skills and advanced project knowledge
gained by the core developers. Peripheral OSS developers are
more likely to participate in social chatting and discuss
unwanted behaviors, errors, and performance issues. These
observations also comply with the previous work [53], which
reported that “Peripheral developers contribute irregularly
and are typically involved in bug fixes or small enhance-
ments.” Issue reporters are nearly the largest population that
participates in all the topics, and their percentages range
from 29.6% to 66.7%. Those high percentages mean that issue
reporters are actively involved in Gitter and discuss various
topics. They are likely to benefit from the instant feature
provided by the Gitter platform for receiving rapid responses
when discussing API changes, performance issues, new
features, something that does not work, etc. Moreover, among
all the dialogs, they discuss API changes most, which might
reflect the compatibility challenges faced by open-source
software supply chain [54]. The reviewers are worthy of the
name, they also prefer to participate in conversations about
code review and reliability issues on Gitter. They showed
little preference for “API change,” “Unwanted behavior,” and
“Design.” The commenters are not interested in API change
(6.1%), however, they showed similar interest in other topics,
ranging from 15.4% to 22.8%.

Finding 3: On the Gitter platform, core OSS developers are
more interested in discussing designs, while peripheral OSS
developers are more likely to participate in social chatting,
discussing unwanted behaviors and errors.

TABLE 4: Conversation topics of different roles of CPCs

Topic Core Peripheral Issue Reviewer Commenter
API Usage 13.6% 10.6% 41.1% 16.9% 17.8%Solution-

oriented Review 10.4% 7.3% 39.6% 25.0% 17.7%
Unwanted Behavior 19.8% 13.5% 39.6% 7.2% 19.8%
Do Not Work 8.7% 7.2% 46.4% 17.4% 20.3%
Reliability Issue 14.8% 7.4% 29.6% 25.9% 22.2%
Performance Issue 9.7% 11.3% 51.6% 11.3% 16.1%
Test/Build Failure 16.7% 8.3% 41.7% 12.5% 20.8%
Error 20.7% 12.8% 32.9% 12.2% 21.3%

Problem-
oriented

API Change 18.2% 6.1% 66.7% 3.0% 6.1%
Background Infor 17.8% 10.4% 40.0% 11.9% 20.0%
New Features 9.1% 4.5% 50.0% 20.5% 15.9%
Design 32.0% 0.0% 40.0% 8.0% 20.0%

Domain-
related

Knowledge-
oriented

Learning 15.8% 5.9% 35.6% 19.8% 22.8%
Social Chatting 15.4% 15.4% 33.8% 20.0% 15.4%Non Domain-related General Development 6.2% 9.2% 46.2% 23.1% 15.4%

8

6 RQ3: CPCS’ BEHAVIORAL CONSISTENCY

6.1 Methodology
In order to examine whether CPCs behave similarly or
differently when switching platforms, we investigate the
behavioral consistency of CPCs across two platforms in terms
of activeness, influence, and collaboration.

Activeness Consistency. We define the activeness for in-
dividual developer di on Gitter and GitHub as Equation
3 and 4. The utterances of a developer in the chatroom
indicate his/her activeness on Gitter. The GitHub activeness
is correlated to the four types of development activity
introduced before, i.e., commit, issue, review, and comment.
Since the variability among these values is huge, we apply
normalization to Gitter and GitHub activeness, notated with
a subscript nor. As shown in Equation 3 and 4, the Gitter
activeness is normalized straight away, while the GitHub
activeness is measured by an equal-weighted summation of
the normalized count of the four kinds of activity mentioned
before. In this way, both Gitter Activeness and GitHub
activeness are scaled into a range from 0 to 1. Then correlation
analysis is employed to investigate consistency. Since the
activeness data does not meet the requirement of bivariate
normality, we apply Spearman’s correlation analysis [55]
to examine whether CPCs’ Gitter activeness and GitHub
activeness are consistent.

Utterance(di) =
∑

utterance(di)

Activeness Gitter(di) =Utterancenor(di)
(3)

Commit(di) =
∑

commit(di)

Issue(di) =
∑

issue(di)

Review(di) =
∑

review(di)

Comment(di) =
∑

comment(di)

Activeness GitHub(di) =
1

4
Commitnor(di)

+
1

4
Issuenor(di)

+
1

4
Reviewnor(di)

+
1

4
Commentnor(di)

(4)

Activeness consistency is investigated from a macro
perspective and a dynamic perspective. In macro activeness
consistency analysis, we investigate the correlation of all
CPCs in all seven communities from the beginning of usage
of both Gitter and GitHub until the ending date of our
data collection. In the dynamic analysis, we measure the
cumulative correlation change of each project over time.
The correlation coefficient is iteratively recalculated every
incremental 30 days to observe changing trends.

Influence Consistency. We define four levels of influence
according to quartiles of SLC values of the Gitter network
and GitHub network. Respectively, Gitter-Q4 denotes the
quarter of the highest SLC in Gitter, Gitter-Q3 denotes the
SLC of this quarter ranging from the median to the third
quartile, and so on. By tracing the influence migration flow
between Gitter and GitHub, we can observe their influence
consistency.

Collaboration Consistency. To investigate collaboration
consistency, we analyze the overlap between communication
groups on Gitter and collaboration groups on GitHub in
two steps. First, we cluster the CPCs from the two platforms
into communication or collaboration groups respectively. For
the Gitter platform, we consider the developers who have
communicated within the same dialog as a communication
group. For the GitHub platform, we consider the developers
engaged in the same development activity as a collabora-
tion group. The goal is to investigate CPCs’ collaboration
consistency, therefore, we retain groups that contain at least
two members. Second, we pair the two groups taken from
the two platforms and calculate their degree of overlap. The
extent of overlapping is calculated via Jaccard coefficient. For
example, 100% overlap denotes that the developers in the
two groups are the same. 50% overlap denotes that half the
developers in the two groups are the same. If the degree of
overlap between groups on Gitter and groups on GitHub
is high, we consider the CPCs’ collaboration is consistent
across the two platforms, and vice versa.

6.2 Result and Analysis

To investigate CPCs’ behavioral consistency, we compare
their behaviors between two platforms in terms of active-
ness consistency, influence consistency, and collaboration
consistency.

Activeness Consistency. Figure 5 shows the macro
correlation analysis result of Gitter and GitHub activeness
with the Spearman’s correlation coefficient r equals to 0.17
(p-value = 4.99× 10−30). It means there is only a weak and
slight correlation between Gitter and GitHub activeness. The
majority of developers cluster near the horizontal and vertical
axis instead of the center, indicating their Activeness Gitter
does not align with Activeness GitHub in most cases. Even
though CPCs as a whole show active participation on both
Gitter and GitHub platforms according to Finding 1 (CPCs
account for more than 3/5 of the Gitter utterances and nearly
1/5 of GitHub contributions), the little correlation between
Activeness Gitter and Activeness GitHub implies that
the consistent activeness does not exist anymore individual-
wisely. The far-out values that are highly active on one
platform while much less active on the other might be
because the developers’ effort is limited so they can not
afford to be both highly active on Gitter and GitHub.

Ac
tiv
en
es
s_
G
itH
ub

0.0

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8 1.0

1.0 $ = 0.17

Activeness_Gitter

)*+,- = 4.99×10!$#2-

Fig. 5: Macro activeness correlation of cross-platform contrib-
utors.

9

25
-M

ay
-20

17

23
-N

ov
-20

17

25
-M

ay
-20

18

23
-N

ov
-20

18

25
-M

ay
-20

19

23
-N

ov
-20

19

24
-M

ay
-20

20

23
-N

ov
-20

20

25
-M

ay
-20

21

23
-N

ov
-20

21

25
-M

ay
-20

22

-0.2

0.0

0.2

0.4

0.6

0.8

co
rre

la
tio

n
co

ef
fic

ie
nt

 r Angular
Appium
DL4J
Docker
Ethereum
Nodejs

Typescript

Fig. 6: Cumulative activeness correlation change

Figure 6 visualizes the change of culmulative activeness
correlation throughout time. In all cases, the correlation
coefficient r rises to a peak during the early stage of Gitter
usage. Projects like DL4J and Appium’s peak values can
even indicate a strong and moderate correlation, respectively.
Then r starts to decline until reaching a flattening out, where
correlation is weak in the late and stable stage of OSS. This
is probably related to the evolution of the OSS community.
When Gitter was first introduced to these projects, the project
contributors were actively developing and testing on GitHub
and discussing these developmental problems on Gitter,
resulting in a relevantly high correlation during this period.
However, with the evolution and growth of the OSS commu-
nities, more commenters and issue reporters were engaged
in Gitter live chat, asking questions such as API usage that
are less relevant to GitHub developmental activities and
making occasional contributions [44]. Additionally, the active
contributor might retire or take breaks from making GitHub
contributions [20] but are still active on Gitter.11 These CPCs’
discussions are active on Gitter but their contribution is
much less on GitHub, leading to a mismatch and thereby a
weakening correlation relationship.

Finding 4: Broadly, there is merely a weak correlation
between Gitter activeness and GitHub activeness. However,
the cumulative activeness correlation changes over time,
following a fast rise and a steady decline trend, until
converging on a weak correlation.

Influence Consistency. To exhibit the flow of CPCs’
influence on GitHub and Gitter, we draw the Sankey diagram
as shown in Figure 7. The length of black lines represents
the number of CPCs that fall into the corresponding SLC
quarter. The width of the connections is proportional to the
number of CPCs who shift from a quarter in one platform
to a quarter in the other. If the connections are straight,
the influence levels remain the same. If the connections are
curved, the influence levels change. We can see that about
70.2% connections are curved, which means most CPCs’
social influence largely migrates between platforms. The
results indicate that CPCs with lower influence are able to
achieve higher social influence on the other platform and

11. This phenomenon is observed in RQ4 (Section 7.2.3) in our study.

20000 30000 40000 50000 60000

! = 0.20

Activeness_GitHub

Gitter-Q4

Gitter-Q3

Gitter-Q2

Gitter-Q1

GitHub-Q4

GitHub-Q3

GitHub-Q2

GitHub-Q1
Low

High

SL
C

16.8% (44.2% of Gitter-Q4)

4.6%

5.1%

3.3%

6.3% 6.1%

Fig. 7: CPC’s influence migration between Gitter and GitHub

vice versa, as notated in red in Figure 7. In the meanwhile,
as annotated in black, only 29.8% connections are straight,
which means only these CPCs retain their degree of influence
at the same level. It is noticeable that a thicker flow lies
between Gitter-Q4 and GitHub-Q4, showing that nearly
half (44.2%) of Gitter-Q4 CPCs retain their high influence
while communicating on the Gitter. These CPCs are typically
OSS core developers or leaders who are involved with
the OSS communities for a relatively long period and are
responsible for guiding and coordinating communication
and development [19], [39], [40].

Finding 5: The level of CPCs’ social influence frequently
changes between Gitter and GitHub. Despite Some contrib-
utors have a low social influence level on GitHub, they can
be highly influential on Gitter.

Collaboration Consistency. Table 5 shows the number of
identified Gitter communication groups and GitHub collabo-
ration groups, and the average size of the groups. The ‘100%
overlap’ columns show the percentage of GitHub groups
that are 100% overlapping with the groups on Gitter, and the
percentage of Gitter groups that are 100% overlapping with
the groups on GitHub. The ‘50% overlap’ columns show the
percentage on the 50% overlapping. We can see that except
for Deeplearning4j, most of the studied OSS communities
have zero or small overlaps between their Gitter groups and
GitHub groups, indicating CPCs’ collaboration groups on
Gitter rarely intersect with their collaboration groups on
GitHub.

10

TABLE 5: Overlaps between GitHub collaborative groups and Gitter chat groups

Community CPC in GitHub CPC in Gitter 100% overlap 50% overlap
Group # Dev per group # Group # Dev per group % GitHub % Gitter % GitHub % Gitter

Angular 1,637 2.5 6,951 2.7 2.9% 0.7% 12.3% 12.0%
Appium 0 0.0 139 2.3 0.0% 0.0% 0.0% 0.0%

Dl4j 1,371 2.7 3,126 2.7 26.0% 11.4% 73.2% 57.0%
Docker 0 0.0 35 2.1 0.0% 0.0% 0.0% 0.0%

Ethereum 5 2.0 21 2.0 0.0% 0.0% 0.0% 0.0%
Nodejs 7 2.1 72 2.0 0.0% 0.0% 0.0% 0.0%

Typescript 631 2.4 2,149 2.7 1.6% 0.5% 8.9% 9.4%

This reveals that the developers who collaborate with
each other on GitHub do not frequently communicate on
Gitter, and vice versa. This may be because the two platforms
serve different concerns for developers. For example, the
group of developers who have collaboratively resolved issues
on GitHub, are likely not to discuss them again on Gitter.

Finding 6: The CPCs’ collaboration groups on Gitter rarely
intersect with their collaboration groups on GitHub.

7 RQ4: GITTER’S IMPACT ON CONTRIBUTION

7.1 Methodology
To understand Gitter’s impacts on GitHub contribution, we
investigate its impact on new contributors, onboarded con-
tributors as well as returned code contributors, respectively.

Impact on New Contributors. Aiming to explore whether
live chat facilitates new contributor attraction, We analyze
those new GitHub contributors who are attracted via Gitter
and how they are attracted. First, we identify the new con-
tributors that are likely attracted via Gitter, based on whether
they have been active in Gitter before their first contribution
to GitHub. Second, we collect the ‘last’ conversations they
were involved in Gitter before their first contribution as
the attracting conversations. Third, we employ an open
card sort process [56] to manually categorize the attracting
conversations based on their contents. We enroll a team
consisting of three Ph.D. students. All of them are fluent in
English and have done either intensive research work with
software development or have been actively contributing to
open-source projects. The open card sort starts with no prede-
fined categories, then the team members individually assign
categories to the same dialogs. The process is conducted
in multiple rounds. In the first round, all participants label
10% sampled dialogs with a thorough discussion to obtain
conceptual coherence. A shared pool of categories is utilized
and carefully maintained, and each participant could select
existing categories from and/or add new category names
to the shared pool. The sorting process ends when there is
no new category added for two consecutive rounds. The
average Cohen’s Kappa is 0.84, which indicates substantial
agreement.

Impact on Onboarded Contributors. Onboarded contribu-
tors refer to contributors who have onboarded on GitHub
platforms and made contributions. To find out Gitter live
chat’s impact on onboarded contributors’ contributions, we
categorize GitHub developers into two groups based on the
usage of Gitter.

• G1: GitHub developers who use Gitter, i.e., CPCs.
• G2: GitHub developers who do not use Gitter, i.e., non-

CPCs on GitHub.
We compare the differences between the two groups in

terms of the number of commits, issue reports, reviews,
and comments. Note that this comparison between the two
groups is role-wise. As introduced in Section 4.1, the role
taxonomy is onion-structured, which means that the centered
roles in high priorities could participate in lower-priority
activities. For instance, peripheral developers could also
report issues and make comments. Therefore, as shown in
Figure 8, we compare the contributions of CPCs and non-
CPCs of the specific roles that would make certain types of
the above-mentioned contributions. For example, for commit
contribution, the comparison subject G1 contains CPCs that
made commits (i.e. core and peripheral developers in CPCs),
and G2 includes non-CPCs that made commits (i.e. core and
peripheral developers in non-CPCs). And for issue report
contribution, the object roles are core developers, peripheral
developers, and issue reporters.

Contribution metric Comparison roles

Commit

Issue report

Review

Comment Core
developers

Core
developers

Core
developers

Core
developers

Core
developers

Core
developers

Core
developers

Core
developers v.s.

v.s.

v.s.

v.s.

G1 G2

Fig. 8: Role-wise comparison

In addition, to achieve a fine-grained understanding of
their GitHub contribution, we also compare the following
aspects in a role-wise way:

• Response rate: the rate of issues/PRs proposed by a
specific developer getting responses from others.

• Issue closure rate: the rate of issues opened by a specific
developer getting closed.

11

• PR approval rate: the rate of pull requests proposed by
a specific developer getting approved.

• Issue resolution time: the time interval between an
issue’s opening and closing (in seconds).

• PR approval time: the time interval between a PR being
proposed and approved (in seconds).

• Commit frequency: the number of code commits made
by a specific developer per day.

Hypothesis testing is used to validate if the differences
are significant, with the null hypothesis to be:

H0: The CPCs’ contributions are smaller than or equal
to (≤) that of developers who do not chat on Gitter.

Note that hypothesis testing is applied on each metric, so
there will be a detailed hypothesis for each metric, with
the contribution type displayed in the description of H0.
Metrics that are not related to time can be measured by
the accumulated number. However, if the metric is issue
resolution time or PR approval time, the shorter time
indicates better performance, so the operator in H0 should
be ≥.

Impact on returned code contributors. Prior research on the
life cycle of contributors revealed that code contributors
might disengage in making contributions for a period of
time and some of them would return to OSS after taking a
break [20]. Since code contributors are the backbone of the
OSS product, the loss of them is a major problem in OSS com-
munities and ecosystems [57] that might lead to community
disruption, productivity decline [58], and product quality
reduction [59]. Therefore, we are motivated to explore the
impact of live chat on code contributors’ returning. To that
end, we first investigate whether contributors participate in
Gitter live chat during inactive periods, then we calculate the
return probability of contributors who chat during inactivity
and those who do not, respectively. The detailed steps are as
follows:

(1) We define three states that can reflect OSS contributors’
turnover according to previous work [20] as follows:

• ACTIVE: a period during which the contributor con-
tributes to GitHub actively by committing.

• BREAK: longer-than-usual pauses between two ACTIVE
states. Note that the threshold to determine whether a
pause period is longer than usual is set based on each
developer’s own work rhythm. Given a pause sequence
P =< p1, p2, ...pn >, the algorithm first utilizes the far
out values approach [60] to define a developer-specific
threshold Tfov = Q3(P) + 3× IQR, where Qn denotes
the nth quartile of P , and IQR = Q3(P) − Q1(P)
the interquartile range (or H-spread). As contributors’
work rhythms are likely to change over time, to achieve
naturalness, the algorithm introduces sliding window
mechanism. The BREAK periods are defined as the
longer-than-usual pauses that are above Tfov within
the window.

• GONE: If a contributor has been in BREAK state for
more than one year, he/she will be considered as GONE
instead.

(2) We can generate the state sequences Life(di)
for individual developer di according to his/her ac-
tivities on GitHub over time. E.g., Life(Tom) =
{ACTIV E,BREAK,ACTIV E,GONE,ACTIV E}

(3) We consider a ‘Return’ happens if the state changes
from BREAK to ACTIVE, or GONE to ACTIVE. Indeed, the
state sequence Life is a Markov chain [61], in which the
probability of each state depends only on the previous state.
Thus, given the state sequence Life = {x1, x2, ...xn}, we
can calculate the return probability as the state transition
probability:

P (Return) =P (xi = ACTIV E|xi−1 = BREAK)

+ P (xi = ACTIV E|xi−1 = GONE)
(5)

where xi denotes a certain state in Life.

7.2 Result and Analysis

In this subsection, we will introduce Gitter’s impact on OSS
contribution in three aspects: new contributors, onboarded
contributors, and returned contributors.

7.2.1 Impact on New Contributors

Among all the GitHub developers, we find that 2.5%
(2,204/89,858) developers have participated in Gitter dialogs
before their first contribution to GitHub.

Fang et. al [62] recently reported that tweets containing
links to GitHub repositories cause an around 2% increase in
committers. In this study, we observe a higher increase in
attracting new contributors via Gitter. The higher increase
may be due to the difference between the two platforms in
that, Twitter is a communication platform for socialization
among any individual who registered, while Gitter is a
communication platform for technical discussions among
OSS developers.

To analyze how Gitter attracts new contributors, we
collect 2,204 dialogs that they last participated in before their
first contribution as attracting conversations. Limited by the
effort, we obtained a representative sample (328 dialogs) with
95% confidence level and 5% confidence interval, carefully
read their utterances, and classify them into six categories
as shown in Figure 9. In terms of motivation, 89% new
contributors are self-motivated (NC1-4, NC6), and 7.3% are
motivated by core developers. In terms of identity, 56.7%
(NC1, NC3, NC6) are OSS product users, and 39.6% (NC2,
NC4-5) are other developers who are interested in the OSS
products. Note that, 3.7% are rare cases that are considered
as others. The explanations and examples of NC1-NC6 are
as follows.

NC1. OSS product users who seek help for using the
OSS product (35.1%). 35.1% attracting conversations can
indicate that the new contributors are the product users
who use the product as a third-party library in their own
code. They actively seek help about usage problems from
the community, e.g., “How can I implement video streaming
using NodeJS?”.

NC2. Supportive developers who are keen on sharing
knowledge, new techniques, and experience. (24.1%) 24.1%
attracting conversations can indicate that the new contrib-
utors are supportive and sociable. They tend to share their
knowledge or experience and discuss new techniques with
other developers. e.g., they answer other developers’ ques-
tions, participate in complex technical discussions, provide

12

OSS product users who seek help for
using the OSS product

Supportive developers who are keen on
sharing knowledge, new techniques,

and experience

OSS product users who seek help for
fixing the OSS product

Active developers who seek guidelines
for contributing to OSS products

Outside developers encouraged by
core developers to contribute

Active newbies who seek help for
learning from scratch

35.1%

24.1%

18.0%

8.2%

7.3%

3.6%

NC1

NC2

NC3

NC4

NC5

NC6

Self-motivated (89.0%)
Core-dev-motivated (7.3%)
OSS product user (56.7%)
Developers (39.6%)

Fig. 9: The identity and motivation of new contributors imported via Gitter.

NC 3
(59 dialogs)

NC 3.1: Directly related
(26 dialogs)

NC 3.2: Not directly related
(33 dialogs)

NC 3.1.1: Raised issue on Gitter, but was not responded
(8 dialogs)

NC 3.1.2: Raised issue on Gitter, received confirmation,
then open/resolve this issue on GitHub

(18 dialogs)

44.1%

55.9%

13.6%

30.5%

NC3.1.1-Example:

<CPC> Hello everyone, can someone confirm to me that pipe names should be
named in camel case? I tried using kebab case, but got an error which you can see in
the stackblitz below. - The style guide doesn't seem to explicitly say what convention
to use for pipes (the example shows camel case though). [<-LINK->]
<R1> i always use camelCase
<R2> @CPC Almost seems like missing documentation in this case …… I think the
reason for pipeNames not being kabab-case is something todo with interpolation + JS
syntax ……
<CPC> @R2, i think that makes sense, I guess I'll just submit a bug on the
documentation then and ask that it be a bit more explicit.

Gitter Dialog: GitHub Contribution:
docs(localize): fix spelling of documentation link
CPC wants to merge 1 commit into angular:master

Fig. 10: Cross-platform connection investigation results of NC3 dialogs.

external links for learners, and disseminate newly released
tools or technologies.

NC3. OSS product users who seek help for fixing
the OSS product. (18%) 18% attracting conversations can
indicate that the new contributors are the OSS product users
who seek help for fixing reported issues that may annoy
them. E.g., ”In order to solve issue #30507, I’m looking into
this link, which should get the whole possible type instead
of a concrete type. Are there util methods to replace type
parameters in an expression?”

To further assess Gitter’s impact on attracting issue
reporters and resolvers, we investigate if a connection exists
between the issue raised in the Gitter chatroom and NC3-
CPCs’ first contribution. As shown in Figure 10, 44.1% of
issues raised in NC3 dialogs are directly relevant to the
GitHub contribution (reporting the issue/committing code
to resolve the issue) made by the CPC under investigation.
Among them, 13.6% of developers were not responded so
they chose to report/resolve it on their own, and 30.5%
of developers received confirmation about the issue they
raised on Gitter and reported/resolved it on GitHub. This
indicates that raising problems on live chat encourages
passive users and readers to take their first step towards
GitHub contribution, reporting and fixing OSS defects to
improve OSS quality.

NC4. Active developers who seek guidelines for con-
tributing to OSS products. (8.2%) 8.2% attracting conver-
sations can indicate that the new contributors are active
developers who show explicit interest in contributing but
don’t know How-To, e.g., ”Does anyone know how to submit
a PR to this repo?”

NC5. Outside developers encouraged by core develop-

ers to contribute. (7.3%) 7.3% of sampled new contributors
are outside developers who are encouraged by core devel-
opers, and then make their first contribution to the GitHub
repository. We will discuss more about this in section 8.

NC6. Active newbies who seek help for learning from
scratch. (3.6%) 3.6% of new contributors are active newbies
who seek help for learning from scratch. e.g., ”I am a student
who wants to make a private blockchain using Ethereum.
But I do not know what to start with so I’m about to start. I’d
like some advice on what I should do first.” They treat Gitter
as their first landing point of OSS development, learning via
Gitter, and then switching to GitHub contributors.

Finding 7: As a recently released communication platform,
the amount of new contributors who participated in live
chat before first GitHub contribution accounts for 2.5%
of the population. 56.7% of them are OSS product users,
and 39.6% are other interested developers. Gitter plays a
positive role in promoting issue reporting and resolving.
Core developers are one of the motivating factors that can
attract new contributors via Gitter.

7.2.2 Impact on Onboarded Contributors
To compare the CPCs’ onboarded GitHub contribution with
that of other GitHub developers, we draw the violin plots
in Figure 11. The inside box plots show the quartiles and
median of the distribution, and the horizontal red line
denotes the mean value. To test the significance of the
difference, we use the Wilcoxon Rank Sum Test, a non-
parametric alternative to the two-sample t-test [63], because
none of the contribution data follows Normal distribution.

In Figure 11(a), we can see that the contribution from
CPCs outstrips non-CPCs in terms of all four types of devel-

13

Commit Issue Review Comment

100,000

10,000

1,000

100

10

1

C
on

tri
bu

tio
n

C
ou

nt
 (l

og
 s

ca
le

)

G1 (CPCs) G2 (non-CPCs on GitHub)

(a) Contribution comparison

Response rate Issue closure rate PR approval rate Issue resolution time

20k

× 1
00

%

× 1
00

%

× 1
00

%

40k

60k

80k

100k

Se
co

nd
s

Se
co

nd
s

PR approval time

20k

40k

60k

80k

100k

pe
rd

ay
(lo

g
sc

al
e)

0 0 10-4

10-3

10-2

10-1

1

10

102

Commit frequency

G1 (CPCs) G2 (non-CPCs on GitHub)

(b) Fine-grained activity comparison

Fig. 11: Onboarded contribution comparison between OSS developers who use Gitter (CPCs) and those who do not
(non-CPCs)

opment activities. The middle and upper part of the violin of
CPCs is wider than non-CPCs, indicating CPCs include more
active contributors. A number of non-CPCs cluster at the
bottom of the violin makes the upper part less wide, which
means there are more one-time contributors in developers
who do not chat on Gitter. We conduct the single-sided test
on the alternative hypothesis “The accumulated number of
CPCs’ contributions is larger than that of developers who
do not chat on Gitter”, from which we come to a conclusion
that the alternative hypothesis is accepted with all p-value
<0.001, indicating a significant difference between the CPCs’
contribution and others’ contribution.

However, according to Figure 11(b), the fine-grained
activity difference between CPCs and non-CPCs is not
as significant as that of the four types of contributions.
According to the hypothesis testing result, only the p-value
for PR approval time is less than 0.001, indicating CPC-
proposed pull requests take a shorter time to be resolved
than those proposed by non-CPCs. While p-values for other
activities are all larger than 0.1. From the violin plots, we can
see that the data distribution of Response rate, Issue closure rate,
PR approval rate and Commit frequency of CPC and non-CPCs
is quite similar, while CPC’s Issue resolution time are slightly
longer than that of non-CPCs.

The communication on Gitter might enable developers to
learn more knowledge and skills about the OSS product, as
well as to obtain closer access to repository core members [64]
which might facilitate later GitHub collaborations with them,
such as making joint commits, encouraging newcomers to
report issues they run into, giving impetus to the progress

to pull requests and code reviewing. A similar phenomenon
has been observed on Twitter by Fang et al. [65], that
newly attracted GitHub contributors tend to collaborate
actively with developers with whom they had prior Twitter
interaction. But when it comes to fine-grained activities, the
advantage of CPCs is not as significant as before. This might
be because issue/PR-related metrics (e.g., Issue closure rate)
are affected by not only the developers who initiated the
issue/PR, but also by the difficulty of the problem itself. For
instance, Sahar et al. [27] reported that issues discussed in
Gitter chat take longer time to be resolved than those not
mentioned in Gitter chat for a possible reason that discussed
issues are so difficult that developers need to raise attention
in chatrooms.

Finding 8: The communication on Gitter might have a
positive impact on some GitHub onboarded contributions,
since GitHub developers who communicate on Gitter have
a significantly higher contribution with regard to commit,
issue, review, comment and PR approval time than those
who do not communicate on Gitter.

7.2.3 Impact on Returned Code Contributors

Figure 12(a) shows two quadrants representing GitHub and
Gitter, respectively. The upper quadrant shows the number
of developers (i.e. code contributors) in the corresponding
GitHub states, and the lower quadrant tells us how many
of them communicate in the Gitter platform when they are
in the corresponding state. Note that the sum of the Gitter
quadrant is larger than the population of CPCs because a

14

Active Break Gone

175,908

96,702 86,584

4,673 2,531 2,338

GitHub

G1 G2

61.8%
54.7%

7.1%

50,000

100,000

150,000

200,000

100,000
Gitter

0

0

(CPDs) (non-CPDs)

0

10%

20%

30%

40%

50%

60%

70%
P(Return)

(a) OSS developer life-cycle across Gitter and GitHub

Active Break Gone

96,702 86,584

4,673 2,531 2,338

50,000

100,000

100,000
Gitter

0

0

G1 G2

61.8%
54.7%

7.1%

(CPCs) (non-CPCs)

0

10%

20%

30%

40%

50%

60%

70%
P(Return)

(b) Comparison on return probability

Fig. 12: Statistics of Gitter’s impact on returned code contri-
bution

sequence of a developer may contain several states. The
same reason applies to the GitHub quadrant as well. In
spite of being inactive (BREAK or GONE) on GitHub, about
2.7% of developers participate in live chat in the meantime.
This indicates that not making any contribution to the
GitHub repository does not mean the contributors leave
the community. They might be active on other platforms that
are related to this project, such as communicating on live
chat. Inspired by this phenomenon, we further investigate
whether developers who communicate on live chat have
a higher possibility of return. As shown in Figure 12(b),
G1 (developers who use Gitter) has a higher probability of
returning to ACTIVE than G2 (developers who do not use
Gitter) by 7.1%, indicating live chat communication has a
positive effect on inactive developers’ returning.

Finding 9: The communication on Gitter has a positive im-
pact on returned GitHub contributions. GitHub Developers
who communicate on Gitter have a higher probability of
returning to contribute than those who do not communicate
on Gitter. We observe that there are 2.7% developers who
have been inactive on GitHub still participate in discussions
on Gitter.

8 IMPLICATIONS

In this section, we provide implications and suggestions
for individual developers, OSS communities, and OSS re-

searchers.

8.1 Individual Developers
Live chat is a good landing point for joining the OSS com-
munities (Finding 1, Finding 4, Finding 7, Finding 8). For
new developers who would like to join the OSS communities
to contribute, live chat is a good landing point since 12.2%
of Gitter chatters are cross-platform contributors, and they
contribute to more than 3/5 Gitter utterances and nearly
1/5 of GitHub contributions. These CPCs are experienced
and important contributors in the OSS communities, it is
a good ice-breaking activity once the new developers and
the experienced ones have gotten to know each other. If
new developers could participate in discussions with them,
they will have the opportunity to seek help for using the OSS
product, be taught knowledge and experience, be encouraged
by core developers, etc. on the Gitter platform.

Leverage live chat to raise awareness of GitHub issues
(Finding 1, Finding 3, Finding 6, Finding 7). According
to the analysis of RQ1 and RQ2, issue reporters are the
majority of CPCs, and they are actively engaged in various
topics. Live communication on Gitter enables developers
to gain closer access to these issue reporters and possibly
receive guidance from them. In Figure 9, 18% of OSS product
users are seeking help for fixing issues about OSS products
before their first contribution. This might be because live chat
platforms such as Gitter provide an opportunity for instant
communication with other issue reporters in a more timely
way. Besides discussing discovered bugs and resolution
ideas, developers can also share similar experiences and
inquire about the current progress of an issue. Therefore,
if developers encounter issues that are out of their ability
or lack attention on GitHub, they can resort to live chat, to
bring it to other experienced developers that are supportive
to help.

8.2 OSS Communities
It’s not a ”Good-bye”, it’s a ”See you in Gitter” (Finding
9). Retaining onboard contributors has always been an
important goal for any OSS community [64]. We found that
the developers who use Gitter have a higher probability to
return, than the developers who do not use Gitter (Figure
12(b)). Therefore, to maintain a sustainable lifecycle of OSS
developers, and prevent developers from dropping the
community, the communication platform could help. OSS
community could closely cooperate with communication
platforms, providing support or integration mechanisms
that the OSS contributors can use handily. OSS stakeholders
should pay more attention to the maintenance of their
communication community, e.g., (1) promote official chat
platforms on the website and GitHub repository README
file, encouraging developers and users to participate in it;
(2) host online technical salons, events, or Q&A sessions to
encourage regular engagement, keep the community active,
and foster collaboration among members; (3) consider hiring
moderators or community managers to address inappropri-
ate behaviors that undermine the positive atmosphere such
as irrelevant advertising.

Live chat is an important place to absorb new contrib-
utors (Finding 7). Absorbing new developers to contribute

15

is another important goal for OSS communities [64]. In RQ4,
we found that Gitter is an important place to absorb new
contributors, and these new contributors can be summarized
into different categories in terms of motivation and identity.
We notice that core developers could play an essential
role in encouraging newcomers. To better exhibit how they
successfully encouraged newcomers, we revisit the dialogs
in RQ4 which belong to NC5, and choose one conversation
to exemplify, as shown in Figure 13. We can see that at first
newcomer D1 discovered a bug and reported it in the Gitter
chatroom to raise attention. Then the core developer D2
encouraged the newcomer twice as well as provided detailed
guidelines to the newcomer, and successfully motivated
their first contribution. Being a core developer implies not
only successful project management but also a high level
of influence on others. It is a good practice that more OSS
core developers can interact with newcomers or periphery
developers via live communication platforms to encourage
more contribution. It is also suggested that OSS stakeholders
not only provide accessible onboarding guidelines on code-
hosting platforms but also their communication platforms.

<D1>

<D2>
<D1>
<D2>

<D1>

<D1>

<D2>
<D2>

<D2>

1. D1 discovered
a bug

3. D2 further
inspired D1,
and D1 became a
new contributor

2. Core dev D2
encouraged D1,
but D2 rejected

I thought someone at DL4J would like to know:
The PredictGenderTrain dl4j example frequently
does not learn/converge (~50\% error through all
epochs). It seems to work reliably when I reduce
the learningRate = 0.005; GF was .01; So, you
might update source code.
@D1 pull request would be even better :D
Sorry, I'm not that sophisticated with GIT yet.
https://help.github.com/articles/about-pull-requests/
doesn't hurt to learn :D it's only a few commands
https://yangsu.github.io/pull-request-tutorial/
It's widely documented
OK, wow, I did it as a pull request. That wasn't as
hard as I thought. You can quote me on that for
future people.
haha awesome. Congrats! :D
Merged :D welcome to the world of open source
This is awesome. Thanks for giving me a push.

Fig. 13: A Gitter conversation about how core developers
encourage developers to make contribution

Benefit from the knowledge sharing among multi-
platforms (Finding 1, Finding2, Finding 5). In RQ1 and
RQ3, we find that, although the population of CPCs is small,
they are responsible for a larger quantity of contribution
and a higher influence, and CPCs undertake the burden of
coordinating communication by playing as focal points on
Gitter. One possible reason might be that these developers
have a wider way of absorbing new knowledge, techniques,
and experience, and can disseminate them across multiple
platforms. Therefore, to benefit from knowledge sharing
among multi-platforms, OSS communities are suggested to
pay more attention to building multi-platforms to enrich
their OSS ecosystem.

8.3 Researchers

Revisit the lifecycle of OSS and its contributors from
a multi-platform perspective (Finding 9). Most existing
studies investigate the lifecycle or contributions of OSS
developers from the most popular platform, i.e., GitHub.
In RQ4, we notice that although some developers are defined
as BREAK or GONE from the GitHub platform, they still

keep active on others, and make other forms of contribution
to the OSS communities. Therefore, it is worth revisiting
the lifecycle of OSS and its contributors from a multi-
platform perspective, as well as exploring what other forms
of contribution they make.

Explore how OSS developers collaboratively resolve
issues or review code on live chat (Finding 3 and Finding
7). In RQ2 and RQ4, we find that OSS developers might
launch technical conversations that discuss complex issues
or code reviews on Gitter, taking its advantage of the timely
response and closely linking to GitHub. By analyzing these
complex technical conversations, we could better understand
the OSS collaboration mechanism. Sahar et al. [27] took a
first attempt at analyzing the duration of issue resolution via
Gitter. But there is still a lot worthy of exploring, such as
how they review code via live chat and whether discussing
issues via live chat helps increase the quality.

Automatically answer the questions on live chat with
high confidence, especially for developers who seek help
for joining the OSS community (Finding 7). In RQ4
(Figure 9), 8.2% of sampled developers seek instructions
or guidelines to follow to contribute. Similar questions
might have been answered before, however, if not answered
correctly or timely, the OSS community might risk losing
potential new contributors. If there is a Q&A bot that can
automatically answer those questions with high confidence,
the OSS community will benefit from it in terms of attracting
newcomers and improving communication efficiency.

9 THREATS TO VALIDITY

This section discusses the threats to validity of our work.
External Validity. The external threats are related to the

generalizability of the proposed approach. Our empirical
study used seven most participated open source communities
from Gitter. Although we generally believe all communities
may benefit from knowledge learned from more productive,
effective communication styles, future studies are needed
to focus on less active communities and comparison across
all types of communities. Another potential threat in our
study lies in the selection of studied platform subjects. We
choose Gitter and GitHub as the representation of developers’
communication and collaboration platform, respectively.
However, there are other online chatting platforms like
Discord and Slack, and other social coding platforms such as
GitLab. Therefore, there might be discussions taking place
on Discord or Slack that are not investigated in our work.
However, all the selected projects are the most participated
Gitter chatrooms in the corresponding domains and have
achieved a good communication community on Gitter,
discussing technical problems and knowledge, as reported
by Shi et al. [2]. Other prior works also support Gitter’s
advantage as a communication platform for OSS [1], [27], [26].
Therefore, we believe Gitter and GitHub are able to reflect
developers’ open-source communication and development
due to their openness, successful history management, word-
wide prevalence, project-oriented organizing as well as tight
association between them.

Internal Validity. The internal threats relate to exper-
imental errors and biases. The first internal threat comes
from the extraction of cross-platform contributors. Gitter
provides three approaches to signing in: GitHub account,

16

GitLab account, and Twitter account. Signing via a GitHub
account is the most dominant way (80% accounts of the
selected projects are GitHub users). However, there still
exists a tiny chance that developers may sign in via GitLab
or Twitter accounts yet they have GitHub accounts that make
contributions to the repository. The second threat might come
from the process of card sorting. We understand that such
a process is subject to introducing mistakes. To reduce that
threat, we establish a labeling team and performed a peer
review on each result. We only adopt data that received the
full agreement or reach agreements on different options.

Construct Validity. The construct threats relate to the
suitability of evaluation metrics. In this study, the construct
threat lies in the way we construct attracting conversations
and new contributors via Gitter in RQ4. We assumed
developers who communicated on Gitter before their first
contributions are attracted by the last discussions they had
on Gitter. But some potential motivations for making the
contribution might be unseen to us because we can not
observe the activities out of Gitter and GitHub. However, by
carefully analyzing those dialogs and determining NCs as
shown in Figure 9, we consider the attracting effect is highly
related.

10 RELATED WORK

Our work is related to prior studies on analyzing developer
communication platforms, analyzing OSS contributions on
GitHub, and analyzing OSS activities from a multi-platform
perspective.

Analyzing Developer Communication Platforms. Re-
cently, more and more work has realized that communication
platforms play an increasingly important role in OSS col-
laborative development. Those previous works analyzed
the communication among OSS developers via different
platforms, e.g., Gitter [1], [2], [8], Slack [22], Discord [10],
[30], IRC [4], [23], [66], Mailing-list [67], Issue tracking
systems [68], [69], and Stack Overflow [70], [71]. For ex-
ample, Shi et al. [2] dived into developers’ chat on Gitter to
investigate when they interact, what community structures
look like, which topics are discussed, and how they interact.
Lin et al. [22] conducted an exploratory study on how Slack
supports software engineering and team dynamics. Their
research revealed that developers use Slack for personal,
team-wide, and community-wide purposes, and they suggest
the increasingly essential role that live chat plays. Subash
et al. [10] proposed a dataset of Discord chat conversations
from four software development communities within a year,
called Disco, and analyzed five most generally discussed
topics in each Discord channel. Their work emphasizes
the rising popularity of Discord and builds a foundation
for future studies on Discord conversations. Raglianti et
al. [30] leveraged word cloud and source code parsing to
visualize Discord interaction content to assist with software
documentation and program comprehension. Shihab et al. [4],
[23] analyzed the usage of developer IRC meeting channels
of two large open-source projects from several dimensions:
meeting content, meeting participants, their contribution,
and meeting styles. Their results showed that IRC meetings
are gaining popularity among OSS developers, and high-
lighted the wealth of information that can be obtained from
developer chat messages. Di Sorbo et al. [67] proposed a

taxonomy of intentions to classify sentences in developer
mailing lists into six categories: feature request, opinion
asking, problem discovery, solution proposal, information
seeking, and information giving. Although the taxonomy
has been shown to be effective in analyzing development
emails and user feedback from app reviews [72], Huang et
al. [68] found that it cannot be generalized to discussions in
issue tracking systems, and they addressed the deficiencies
of Di Sorbo et al.’s taxonomy by proposing a convolution
neural network based approach. Allamanis and Sutton
[70] presented a topic modeling analysis that combines
question concepts, types, and code from Stack Overflow
to associate programming concepts and identifiers with
particular types of questions, such as, “how to perform
encoding”. Studies on communication platforms focus more
on social interaction features among developers, such as
interaction styles, community structures, raised topics, etc.,
without taking the development features into consideration.

Analyzing OSS Contributions on GitHub. Many prior
studies analyze OSS contributions on GitHub from three
aspects: motivation to contribute [73], [74], [75], [76], produc-
tivity of development [77], [78], [79], [80], and turnover of
contributors [81], [82], [83], [84], [85], [86], [87]. E.g, two
systematic literature reviews [73], [74] on motivation to
join OSS have found 145 papers, and reported that proper
management of motivation and satisfaction helps achieve
higher productivity, avoid turnover, etc. Recently, Gerosa et
al. [75] investigated the shifts in motivations and found that
motivations related to social aspects and reputation increased
in frequency. Vasilescu et al. [78] analyzed process data of
GitHub projects, and reported that continuous integration
improves the productivity of OSS project teams. Zhou et
al. [77] explored how OSS projects on GitHub differ with
regard to forking inefficiencies. They found that better
modularity and centralized management are associated
with more contributions, suggesting specific best practices
that OSS developers can adopt to reduce forking-related
inefficiencies. For developer turnover, existing literature [86],
[87] reported that objective attributes of OSS projects, per-
sonal expectations, level of development experience, and
conversational knowledge were associated with developer
turnover. Robillard [82] highlighted that developer turnover
could cause knowledge loss in OSS project teams, and
Foucault et al. [85] reported that external turnover negatively
impacts software quality. To manage and mitigate the risk of
turnover-induced knowledge loss, Rigby et al. [84] leveraged
scenario simulations and coordination requirements matrices
to quantify the loss and recommend successors. Many studies
have been conducted to analyze the OSS contribution based
on the GitHub platform. Our work is different from the
previous studies as we incorporate the Gitter platform to ana-
lyze the impact of live communication on OSS development,
complementing to the existing studies.

Analyzing OSS Activities from a Multi-platform Per-
spective. Recently, a few studies have started investigating
the impact of OSS communication on development. Sahar
et al. [27] focused on the effect that Gitter has on GitHub
issue resolution, suggesting the discussed issue reports have
a longer solving time than those are never referred on Gitter,
and the number of comments on GitHub issue increases after
this issue was discussed on Gitter. Singh et al. [88] analyzed

17

the effect of knowledge sharing via Wikipedia, Forum, and
Gitter on GitHub contribution, respectively. However, some
of the chat rooms they used do not have a relationship
with an active open source project, and they did not find
evidence that the Gitter knowledge sharing can positively
influence OSS development. Fang et al. [62] focused on the
effect that Twitter has on GitHub project popularity and
new contributors. They found that tweets have a statistically
significant effect on project popularity and a small average
effect on attracting new contributors. The current studies
of multi-platform analysis on OSS communication and
development are just emerging, and there is a lack of in-depth
analysis of the relationship and impact between GitHub and
Gitter. In especial, unlike other live communication platforms,
Gitter is the platform that is directed toward GitHub projects.
Our study bridges that gap with a large-scale analysis of the
characteristics of cross-platform contributors and whether
Gitter can provoke OSS development.

11 CONCLUSION AND FUTURE WORK

In this study, we perform a cross-platform study on Gitter
and GitHub in purpose to bring developers’ communication
and development together by investigating traits of cross-
platform contributors in terms of roles and contribution,
communication preference and behavioral consistency, as
well as the promotive impacts of live chat on OSS in terms
of new contributors, onboarded contributors and returned
contributors. Our study has both theoretical and practical
implications. By analyzing the empirical results, we enable
a deeper understanding of the OSS developers who switch
between the collaborative development platform GitHub and
the instant chatting platform Gitter, and of the interplay of
communication and development. We observe the positive
impact of live chat on open-source development as well as
attracting new contributors. Based on these findings, we pro-
vide recommendations for OSS communities and developers,
as well as shed light on future research directions. In the
future, we plan to utilize the multi-platform perspective to
further investigate the quantitative impact of live chat, e.g., to
what extent can live chat affect the open-source community.
Additionally, as a rising popular developers’ communication
platform, future attention could be paid to mine content on
it along with its related GitHub community. We hope that
the findings and insights that we have revealed will raise
awareness of the rich information hidden in cross-platform
data and enable a promising prospect for OSS communities.

12 ACKNOWLEDGEMENTS

We sincerely appreciate the anonymous reviewers for their
constructive and insightful suggestions for improving this
manuscript. This work was supported by the National
Natural Science Foundation of China (Grant Nos.62332001,
62232016, 62072442, and 62272445), the Youth Innovation
Promotion Association of the Chinese Academy of Sciences,
the Basic Research Program of ISCAS (Grant No.ISCAS-
JCZD-202304), the Major Program of ISCAS (Grant No.ISCAS-
ZD-202302), and a grant from Huawei.

REFERENCES

[1] O. Ehsan, S. Hassan, M. E. Mezouar, and Y. Zou, “An empirical
study of developer discussions in the gitter platform,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 30, no. 1, pp. 1–39, 2020.

[2] L. Shi, X. Chen, Y. Yang, H. Jiang, Z. Jiang, N. Niu, and Q. Wang,
“A first look at developers’ live chat on gitter,” in Proceedings of the
29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2021, pp.
391–403.

[3] H. Hata, N. Novielli, S. Baltes, R. G. Kula, and C. Treude, “Github
discussions: An exploratory study of early adoption,” Empirical
Software Engineering, vol. 27, pp. 1–32, 2022.

[4] E. Shihab, Z. M. Jiang, and A. E. Hassan, “Studying the use of
developer IRC meetings in open source projects,” in 25th IEEE
International Conference on Software Maintenance (ICSM 2009), 2009,
pp. 147–156.

[5] E. Parra, A. Ellis, and S. Haiduc, “Gittercom: A dataset of open
source developer communications in gitter,” in MSR ’20: 17th
International Conference on Mining Software Repositories. ACM, 2020,
pp. 563–567.

[6] P. Chatterjee, K. Damevski, L. Pollock, V. Augustine, and N. A.
Kraft, “Exploratory study of slack q&a chats as a mining source for
software engineering tools,” in Proceedings of the 16th International
Conference on Mining Software Repositories. IEEE Press, 2019, pp.
490–501.

[7] J. A. Jiang, C. Kiene, S. Middler, J. R. Brubaker, and C. Fiesler,
“Moderation challenges in voice-based online communities on
discord,” Proceedings of the ACM on Human-Computer Interaction,
vol. 3, no. CSCW, pp. 1–23, 2019.

[8] E. Parra, M. Alahmadi, A. Ellis, and S. Haiduc, “A comparative
study and analysis of developer communications on slack and
gitter,” Empir. Softw. Eng., vol. 27, no. 2, p. 40, 2022. [Online].
Available: https://doi.org/10.1007/s10664-021-10095-1

[9] V. Stray and N. B. Moe, “Understanding coordination in global
software engineering: A mixed-methods study on the use of
meetings and slack,” Journal of Systems and Software, vol. 170, p.
110717, 2020.

[10] K. M. Subash, L. P. Kumar, S. L. Vadlamani, P. Chatterjee, and
O. Baysal, “Disco: A dataset of discord chat conversations for soft-
ware engineering research,” in Proceedings of the 19th International
Conference on Mining Software Repositories, 2022, pp. 227–231.

[11] S. Zhou, B. Vasilescu, and C. Kästner, “What the fork: A study
of inefficient and efficient forking practices in social coding,” in
Proceedings of the 2019 27th ACM joint meeting on european software
engineering conference and symposium on the foundations of software
engineering, 2019, pp. 350–361.

[12] C. Casalnuovo, B. Vasilescu, P. Devanbu, and V. Filkov, “Developer
onboarding in github: the role of prior social links and language ex-
perience,” in Proceedings of the 2015 10th joint meeting on foundations
of software engineering, 2015, pp. 817–828.

[13] W. Xiao, H. He, W. Xu, Y. Zhang, and M. Zhou, “How early
participation determines long-term sustained activity in github
projects?” in Proceedings of the 31st ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2023, pp. 29–41.

[14] J. Coelho, M. T. Valente, L. Milen, and L. L. Silva, “Is this github
project maintained? measuring the level of maintenance activity of
open-source projects,” Information and Software Technology, vol. 122,
p. 106274, 2020.

[15] Y. Yue, Y. Wang, and D. Redmiles, “Off to a good start: Dynamic
contribution patterns and technical success in an oss newcomer’s
early career,” IEEE Transactions on Software Engineering, vol. 49,
no. 2, pp. 529–548, 2022.

[16] J. Middleton, E. Murphy-Hill, D. Green, A. Meade, R. Mayer,
D. White, and S. McDonald, “Which contributions predict whether
developers are accepted into github teams,” in Proceedings of the
15th International Conference on Mining Software Repositories, 2018,
pp. 403–413.

[17] R. Padhye, S. Mani, and V. S. Sinha, “A study of external community
contribution to open-source projects on github,” in Proceedings of
the 11th Working Conference on Mining Software Repositories, ser. MSR
2014. New York, NY, USA: Association for Computing Machinery,
2014, p. 332–335.

[18] L. Bao, X. Xia, D. Lo, and G. C. Murphy, “A large scale study of long-
time contributor prediction for github projects,” IEEE Transactions
on Software Engineering, vol. 47, no. 6, pp. 1277–1298, 2019.

18

[19] K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, and Y. Ye,
“Evolution patterns of open-source software systems and commu-
nities,” in Proceedings of the international workshop on Principles of
software evolution, 2002, pp. 76–85.

[20] F. Calefato, M. A. Gerosa, G. Iaffaldano, F. Lanubile, and I. Stein-
macher, “Will you come back to contribute? investigating the
inactivity of oss core developers in github,” Empirical Software
Engineering, vol. 27, no. 3, pp. 1–41, 2022.

[21] Y. Wu, J. Kropczynski, P. C. Shih, and J. M. Carroll, “Exploring
the ecosystem of software developers on github and other
platforms,” in Proceedings of the Companion Publication of the 17th
ACM Conference on Computer Supported Cooperative Work amp; Social
Computing, ser. CSCW Companion ’14. New York, NY, USA:
Association for Computing Machinery, 2014, p. 265–268. [Online].
Available: https://doi.org/10.1145/2556420.2556483

[22] B. Lin, A. Zagalsky, M. D. Storey, and A. Serebrenik, “Why
developers are slacking off: Understanding how software teams
use slack,” in Proceedings of the 19th ACM Conference on Computer
Supported Cooperative Work and Social Computing, 2016, pp. 333–336.

[23] E. Shihab, Z. M. Jiang, and A. E. Hassan, “On the use of internet
relay chat (IRC) meetings by developers of the GNOME GTK+
project,” in Proceedings of the 6th International Working Conference on
Mining Software Repositories, MSR 2009 (Co-located with ICSE), 2009,
pp. 107–110.

[24] M.-A. Storey, L. Singer, B. Cleary, F. Figueira Filho, and A. Zagalsky,
“The (r) evolution of social media in software engineering,” in
Future of Software Engineering Proceedings, ser. FOSE 2014. New
York, NY, USA: Association for Computing Machinery, 2014, p.
100–116.

[25] C. Gutwin, R. Penner, and K. Schneider, “Group awareness in
distributed software development,” in Proceedings of the 2004 ACM
conference on Computer supported cooperative work, 2004, pp. 72–81.

[26] M. E. Mezouar, D. A. da Costa, D. M. German, and Y. Zou,
“Exploring the use of chatrooms by developers: An empirical study
on slack and gitter,” IEEE Transactions on Software Engineering,
vol. 48, no. 10, pp. 3988–4001, 2022.

[27] H. Sahar, A. Hindle, and C.-P. Bezemer, “How are issue reports
discussed in gitter chat rooms?” Journal of Systems and Software, vol.
172, p. 110852, 2021.

[28] M. Raglianti, C. Nagy, R. Minelli, B. Lin, and M. Lanza, “On the
rise of modern software documentation (pearl/brave new idea),”
in 37th European Conference on Object-Oriented Programming (ECOOP
2023). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2023.

[29] V. Ebert, D. Graziotin, and S. Wagner, “How are communication
channels on github presented to their intended audience?–a
thematic analysis,” in Proceedings of the 26th International Conference
on Evaluation and Assessment in Software Engineering, 2022, pp. 40–49.

[30] M. Raglianti, C. Nagy, R. Minelli, and M. Lanza, “Using discord
conversations as program comprehension aid,” in Proceedings of the
30th IEEE/ACM International Conference on Program Comprehension,
2022, pp. 597–601.

[31] J. K. Kummerfeld, S. R. Gouravajhala, J. Peper, V. Athreya, C. Gu-
nasekara, J. Ganhotra, S. S. Patel, L. Polymenakos, and W. S. Lasecki,
“A large-scale corpus for conversation disentanglement,” arXiv
preprint arXiv:1810.11118, 2018.

[32] Gitter, “Rest api,” https://developer.gitter.im/docs/rest-api, 2020.
[33] GitHub, “Rest api,” https://docs.github.com/en/rest, 2022.
[34] M. Golzadeh, A. Decan, D. Legay, and T. Mens, “A ground-truth

dataset and classification model for detecting bots in github issue
and pr comments,” Journal of Systems and Software, vol. 175, p.
110911, 2021.

[35] M. Wessel, B. M. de Souza, I. Steinmacher, I. S. Wiese, I. Polato, A. P.
Chaves, and M. A. Gerosa, “The power of bots: Characterizing and
understanding bots in oss projects,” vol. 2, no. CSCW, nov 2018.

[36] B. Vasilescu, A. Serebrenik, and V. Filkov, “A data set for social
diversity studies of GitHub teams,” in 12th Working Conference on
Mining Software Repositories, Data Track, ser. MSR. IEEE, 2015, pp.
514–517.

[37] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan,
“Mining email social networks,” in Proceedings of the 2006 Interna-
tional Workshop on Mining Software Repositories, ser. MSR ’06. New
York, NY, USA: Association for Computing Machinery, 2006, p.
137–143.

[38] GitHub, “Github docs,” https://docs.github.com/, 2022.
[39] M. Joblin, S. Apel, C. Hunsen, and W. Mauerer, “Classifying

developers into core and peripheral: An empirical study on
count and network metrics,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE). IEEE, 2017, pp. 164–174.

[40] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies
of open source software development: Apache and mozilla,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 11, no. 3, pp. 309–346, 2002.

[41] T. T. Dinh-Trong and J. M. Bieman, “The freebsd project: A replica-
tion case study of open source development,” IEEE Transactions on
Software Engineering, vol. 31, no. 6, pp. 481–494, 2005.

[42] J. Coelho, M. T. Valente, L. L. Silva, and A. Hora, “Why we engage
in floss: Answers from core developers,” in proceedings of the 11th
international workshop on cooperative and human aspects of software
engineering, 2018, pp. 114–121.

[43] K. Crowston, K. Wei, Q. Li, and J. Howison, “Core and periphery
in free/libre and open source software team communications,” in
Proceedings of the 39th Annual Hawaii International Conference on
System Sciences (HICSS’06), vol. 6. IEEE, 2006, pp. 118a–118a.

[44] J. Cheng and J. L. Guo, “Activity-based analysis of open source
software contributors: Roles and dynamics,” in 2019 IEEE/ACM
12th International Workshop on Cooperative and Human Aspects of
Software Engineering (CHASE). IEEE, 2019, pp. 11–18.

[45] M. Palyart, G. C. Murphy, and V. Masrani, “A study of social
interactions in open source component use,” IEEE Transactions on
Software Engineering, vol. 44, no. 12, pp. 1132–1145, 2017.

[46] S. Wasserman and K. Faust, Social Network Analysis: Methods and
Applications. Cambridge University Press, 1994.

[47] A. E. Mislove, Online social networks: measurement, analysis, and
applications to distributed information systems. Rice University, 2009.

[48] X. Zhao, F. Liu, J. Wang, and T. Li, “Evaluating influential nodes
in social networks by local centrality with a coefficient,” ISPRS
International Journal of Geo-Information, vol. 6, no. 2, p. 35, 2017.

[49] I. Himelboim, “Reply Distribution in Online Discussions: A Com-
parative Network Analysis of Political and Health Newsgroups,”
Journal of Computer-Mediated Communication, vol. 14, no. 1, pp. 156–
177, 10 2008.

[50] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: An open source
software for exploring and manipulating networks,” in Proceedings
of the International AAAI Conference on Web and Social Media, vol. 3,
no. 1, 2009.

[51] D. Chen, L. Lü, M.-S. Shang, Y.-C. Zhang, and T. Zhou, “Identifying
influential nodes in complex networks,” Physica a: Statistical
mechanics and its applications, vol. 391, no. 4, pp. 1777–1787, 2012.

[52] S. Beyer, C. Macho, M. Pinzger, and M. D. Penta, “Automatically
classifying posts into question categories on stack overflow,” in
Proceedings of the 26th Conference on Program Comprehension, ICPC
2018. ACM, 2018, pp. 211–221.

[53] M. Antikainen, T. Aaltonen, and J. Väisänen, “The role of trust in oss
communities — case linux kernel community,” in IFIP International
Conference on Open Source Systems. Springer, 2007, pp. 223–228.

[54] A. Mockus, “Insights from open source software supply
chains (keynote),” in Proceedings of the ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019,
Tallinn, Estonia, August 26-30, 2019, M. Dumas, D. Pfahl, S. Apel,
and A. Russo, Eds. ACM, 2019, p. 3. [Online]. Available:
https://doi.org/10.1145/3338906.3342813

[55] C. Spearman, “”general intelligence” objectively determined and
measured.” 1961.

[56] G. Rugg and P. McGeorge, “The sorting techniques: a tutorial paper
on card sorts, picture sorts and item sorts,” Expert Systems, vol. 14,
no. 2, pp. 80–93, 1997.

[57] J. Marsan, M. Templier, P. Marois, B. Adams, K. Carillo, and G. L.
Mopenza, “Toward solving social and technical problems in open
source software ecosystems: using cause-and-effect analysis to
disentangle the causes of complex problems,” IEEE Software, vol. 36,
no. 1, pp. 34–41, 2018.

[58] A. Mockus, “Organizational volatility and its effects on software
defects,” in Proceedings of the eighteenth ACM SIGSOFT international
symposium on Foundations of software engineering, 2010, pp. 117–126.

[59] M. Foucault, M. Palyart, X. Blanc, G. C. Murphy, and J.-R. Falleri,
“Impact of developer turnover on quality in open-source software,”
in Proceedings of the 2015 10th joint meeting on foundations of software
engineering, 2015, pp. 829–841.

[60] J. W. Tukey et al., Exploratory data analysis. Reading, MA, 1977,
vol. 2.

[61] A. A. Markov, “Extension of the limit theorems of probability theory
to a sum of variables connected in a chain,” Dynamic probabilistic
systems, vol. 1, pp. 552–577, 1971.

19

[62] H. Fang, H. Lamba, J. D. Herbsleb, and B. Vasilescu, “”this is
damn slick!” estimating the impact of tweets on open source
project popularity and new contributors,” in 44th IEEE/ACM
44th International Conference on Software Engineering, ICSE 2022,
Pittsburgh, PA, USA, May 25-27, 2022. ACM, 2022, pp. 2116–2129.
[Online]. Available: https://doi.org/10.1145/3510003.3510121

[63] C. Wild and G. Seber, “The wilcoxon rank-sum test,” Chance
Encounters: A First Course in Data Analysis and Inference, vol. 611,
2011.

[64] F. Fagerholm, A. Sanchez Guinea, J. Borenstein, and J. Münch,
“Onboarding in open source projects,” IEEE Software, vol. 31, no. 6,
pp. 54–61, 2014.

[65] H. Fang, B. Vasilescu, H. Lamba, and J. Herbsleb, ““this is damn
slick!” estimating the impact of tweets on open source project
popularity and new contributors,” 2022.

[66] L. Yu, S. Ramaswamy, A. Mishra, and D. Mishra, “Communications
in global software development: An empirical study using GTK+
OSS repository,” in Proceedings of the 2011th Confederated International
Conference on the Move to Meaningful Interest Systems, OTM’11, 2011,
pp. 218–227.

[67] A. D. Sorbo, S. Panichella, C. A. Visaggio, M. D. Penta, G. Canfora,
and H. C. Gall, “Development emails content analyzer: Intention
mining in developer discussions (T),” in 30th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE 2015, 2015,
pp. 12–23.

[68] Q. Huang, X. Xia, D. Lo, and G. C. Murphy, “Automating intention
mining,” IEEE Transactions on Software Engineering, vol. PP, no. 99,
pp. 1–1, 2018.

[69] D. Arya, W. Wang, J. L. C. Guo, and J. Cheng, “Analysis and
detection of information types of open source software issue
discussions,” in Proceedings of the 41st International Conference on
Software Engineering, ICSE 2019, 2019, pp. 454–464.

[70] M. Allamanis and C. Sutton, “Why, when, and what: Analyzing
stack overflow questions by topic, type, and code,” in Proceedings
of the 10th Working Conference on Mining Software Repositories, MSR
’13. IEEE Computer Society, 2013, pp. 53–56.

[71] C. Rosen and E. Shihab, “What are mobile developers asking about?
A large scale study using stack overflow,” Empir. Softw. Eng., vol. 21,
no. 3, pp. 1192–1223, 2016.

[72] S. Panichella, A. D. Sorbo, E. Guzman, C. A. Visaggio, G. Canfora,
and H. C. Gall, “How can i improve my app? classifying user
reviews for software maintenance and evolution,” pp. 281–290,
2015.

[73] S. Beecham, N. Baddoo, T. Hall, H. Robinson, and H. Sharp,
“Motivation in software engineering: A systematic literature
review,” Inf. Softw. Technol., vol. 50, no. 9-10, pp. 860–878, 2008.
[Online]. Available: https://doi.org/10.1016/j.infsof.2007.09.004

[74] A. C. C. França, T. B. Gouveia, P. C. F. Santos, C. A. Santana, and
F. Q. B. da Silva, “Motivation in software engineering: A systematic
review update,” in 15th International Conference on Evaluation &
Assessment in Software Engineering, EASE 2011, Durham, UK, 11-12
April 2011, Proceedings. IET - The Institute of Engineering and
Technology / IEEE Xplore, 2011, pp. 154–163. [Online]. Available:
https://doi.org/10.1049/ic.2011.0019

[75] M. A. Gerosa, I. Wiese, B. Trinkenreich, G. Link, G. Robles,
C. Treude, I. Steinmacher, and A. Sarma, “The shifting sands
of motivation: Revisiting what drives contributors in open
source,” CoRR, vol. abs/2101.10291, 2021. [Online]. Available:
https://arxiv.org/abs/2101.10291

[76] F. Q. B. da Silva and A. C. C. França, “Towards understanding
the underlying structure of motivational factors for software
engineers to guide the definition of motivational programs,” J.
Syst. Softw., vol. 85, no. 2, pp. 216–226, 2012. [Online]. Available:
https://doi.org/10.1016/j.jss.2010.12.017

[77] S. Zhou, B. Vasilescu, and C. Kästner, “What the fork: a study
of inefficient and efficient forking practices in social coding,”
in Proceedings of the ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia,

August 26-30, 2019, M. Dumas, D. Pfahl, S. Apel, and
A. Russo, Eds. ACM, 2019, pp. 350–361. [Online]. Available:
https://doi.org/10.1145/3338906.3338918

[78] B. Vasilescu, Y. Yu, H. Wang, P. T. Devanbu, and V. Filkov, “Quality
and productivity outcomes relating to continuous integration
in github,” in Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2015, Bergamo, Italy,
August 30 - September 4, 2015, E. D. Nitto, M. Harman, and
P. Heymans, Eds. ACM, 2015, pp. 805–816. [Online]. Available:
https://doi.org/10.1145/2786805.2786850

[79] S. Khatoonabadi, D. E. Costa, R. Abdalkareem, and E. Shihab,
“On wasted contributions: Understanding the dynamics of
contributor-abandoned pull requests,” CoRR, vol. abs/2110.15447,
2021. [Online]. Available: https://arxiv.org/abs/2110.15447

[80] A. Ram, A. A. Sawant, M. Castelluccio, and A. Bacchelli, “What
makes a code change easier to review: an empirical investigation
on code change reviewability,” in Proceedings of the 2018 ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018,
Lake Buena Vista, FL, USA, November 04-09, 2018, G. T. Leavens,
A. Garcia, and C. S. Pasareanu, Eds. ACM, 2018, pp. 201–212.
[Online]. Available: https://doi.org/10.1145/3236024.3236080

[81] L. Bao, X. Xia, D. Lo, and G. C. Murphy, “A large scale study
of long-time contributor prediction for github projects,” IEEE
Trans. Software Eng., vol. 47, no. 6, pp. 1277–1298, 2021. [Online].
Available: https://doi.org/10.1109/TSE.2019.2918536

[82] M. P. Robillard, “Turnover-induced knowledge loss in practice,”
in ESEC/FSE ’21: 29th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
Athens, Greece, August 23-28, 2021, D. Spinellis, G. Gousios,
M. Chechik, and M. D. Penta, Eds. ACM, 2021, pp. 1292–1302.
[Online]. Available: https://doi.org/10.1145/3468264.3473923

[83] Y. Zhang, H. Liu, X. Tan, M. Zhou, Z. Jin, and J. Zhu, “Turnover of
companies in openstack: Prevalence and rationale,” ACM Trans.
Softw. Eng. Methodol., vol. 31, no. 4, pp. 75:1–75:24, 2022. [Online].
Available: https://doi.org/10.1145/3510849

[84] P. C. Rigby, Y. C. Zhu, S. M. Donadelli, and A. Mockus,
“Quantifying and mitigating turnover-induced knowledge loss:
Case studies of chrome and a project at avaya,” in Proceedings of
the 38th International Conference on Software Engineering, ICSE 2016,
Austin, TX, USA, May 14-22, 2016, L. K. Dillon, W. Visser, and L. A.
Williams, Eds. ACM, 2016, pp. 1006–1016. [Online]. Available:
https://doi.org/10.1145/2884781.2884851

[85] M. Foucault, M. Palyart, X. Blanc, G. C. Murphy, and J. Falleri,
“Impact of developer turnover on quality in open-source
software,” in Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2015, Bergamo, Italy,
August 30 - September 4, 2015, E. D. Nitto, M. Harman, and
P. Heymans, Eds. ACM, 2015, pp. 829–841. [Online]. Available:
https://doi.org/10.1145/2786805.2786870

[86] Y. Yu, A. Benlian, and T. Hess, “An empirical study of volunteer
members’ perceived turnover in open source software projects,” in
45th Hawaii International International Conference on Systems Science
(HICSS-45 2012), Proceedings, 4-7 January 2012, Grand Wailea, Maui,
HI, USA. IEEE Computer Society, 2012, pp. 3396–3405. [Online].
Available: https://doi.org/10.1109/HICSS.2012.97

[87] A. Schilling, S. Laumer, and T. Weitzel, “Who will remain?
an evaluation of actual person-job and person-team fit to
predict developer retention in FLOSS projects,” in 45th Hawaii
International International Conference on Systems Science (HICSS-45
2012), Proceedings, 4-7 January 2012, Grand Wailea, Maui, HI, USA.
IEEE Computer Society, 2012, pp. 3446–3455. [Online]. Available:
https://doi.org/10.1109/HICSS.2012.644

[88] V. K. Singh, S. Chakraborty, and A. Kadian, “The effect of
knowledge sharing on open source contribution: A multi-
platform perspective,” in 53rd Hawaii International Conference
on System Sciences, HICSS 2020, Maui, Hawaii, USA, January
7-10, 2020. ScholarSpace, 2020, pp. 1–10. [Online]. Available:
https://hdl.handle.net/10125/64088

